mwwm
BRUCE PERENS' OPEN SOURCE SERIES

C-++ GUI

PROCRAMMING

WITH ut 3

:r-u 1mming from the ground up,
o advonced GU programmeng
llr!hﬂ-:pﬂ
C overoge of ey Gt fegtures—ugnoly ond
LELS :-?:h loyouts, amd giophee s

Saraight lom the vource —writier by
Trallec b devaloperi

Foreword by Maotthias Evrich
1 A iroliech’s lpod dewsloper
[foumnder of the KDL project

*-..:..-.J'.“'n
| -f“‘*i 5
- AL

JASMIN BUANCHETTE
IWIARK SUMMERFIELD

C++ GUI Programming
with Qt 3

BRUCE PERENS’ OPEN SOURCE SERIES

¢ C++ GUI Programming with Qt 3
Jasmin Blanchette, Mark Summerfield

* Managing Linux Systems with Webmin: System
Administration and Module Development
Jamie Cameron

¢ Understanding the Linux Virtual Memory Manager
Mel Gorman

¢ Implementing CIFS: The Common Internet File System
Christopher R. Hertel

+ Embedded Software Development with eCos
Anthony J. Massa

* Rapid Application Development with Mozilla
Nigel McFarlane

¢ The Linux Development Platform: Configuring, Using,
and Maintaining a Complete Programming
Environment

Rafeeq Ur Rehman, Christopher Paul

Intrusion Detection Systems with Snort:
Advanced IDS Techniques with Snort, Apache,

MySQL, PHP. and ACID
Rafeeq Ur Rehman

¢ The Official Samba-3 HOWTO and Reference Guide
John H. Terpstra, Jelmer R. Vernooij, Editors

C++ GUI Programming
with Qt 3

Jasmin Blanchette

Mark Summerfield

Prentice Hall in association with Trolltech Press

Library of Congress Cataloging-in-Publication Data
A CIP catalog record for this book can be obtained from the Library of Congress

Editorial /| Production Supervision: Kathleen M. Caren
Cover Design Director: Jerry Votta

Art Director: Gail Cocker-Bogusz

Manufacturing Buyer: Maura Zaldivar

Acquisitions Editor: Jill Harry

Editorial Assistant: Brenda Mulligan

Marketing Manager: Dan Depasquale

Copyright © 2004 Trolltech AS
Published by Pearson Education, Inc.
Pﬁﬁrﬂ{a Publishing as Prentice Hall Professional Technical Reference
PTR Upper Saddle River, New Jersey 07458

This material may only be distributed subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is available at http: //www.open-
content.org/openpub/).

Prentice Hall PTR offers excellent discounts on this book when ordered in quanti-
ty for bulk purchases or special sales. For more information, please contact: U.S.
Corporate and Government Sales, 1-800-382-3419, corpsales@pearsontechgroup.
com. For sales outside of the U.S., please contact: International Sales, 1-317-581-
3793, international@pearsontechgroup.com.

Trolltech®, Qt®, and the Trolltech logo are registered trademarks of Trolltech. OpenGL™
is a trademark of Silicon Graphics, Inc. in the United States and other countries. All
other company and product names mentioned herein are the trademarks or registered
trademarks of their respective owners.

The authors, copyright holder, and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. The information in this book is furnished for informational use only, is
subject to change without notice, and does not represent a commitment on the part of the
copyright holder or the publisher. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs
contained herein.

The software described in this book is furnished under a license agreement or non-disclosure
agreement. The software may be used or copied only in accordance with the terms of the
agreement.

Printed in the United States of America
First Printing
ISBN 0-13-124072-2

Pearson Education Ltd.

Pearson Education Australia Pty., Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.

Pearson Educacién de Mexico, S.A. de C.V.
Pearson Education-Japan

Pearson Education Malaysia, Pte. Ltd.

Contents

Foreword i ix
Preface xi
Acknowledgments i xiii
A Brief Historyof Qt i i, XV

1. Getting Started 3
Hello Qt ..o e 3
Making Connectionsciiiiiiiiineenennnn. 5
Using the Reference Documentation 8

2. CreatingDialogs ittt 11
Subclassing QDialog ...ttt 11
Signals and Slotsin Depth 18
Rapid Dialog Designccciiiiiiiiiniiiiiinn.. 21
Shape-Changing Dialogscciiiiiiiiiieeenna... 28
DynamicDialogscoiiiiiiiiiiiii e 33
Built-in Widget and Dialog Classes 33

3. Creating Main Windowsccoiiiiiiiiinnn. 39
Subclassing QMainWindowccoiiiiii.. 40
Creating Menus and Toolbarscouvn.. 44
Implementingthe File Menu 49
Setting Upthe StatusBar o il 56
Using Dialogsccoviiiii i e 58
Storing Settings ... 63
Multiple Documentst 64
Splash Screens ... 67

4. Implementing Application Functionality 69

The Central Widget ..., 69
Subclassing QTable ...t 70
Loadingand Savingcciiiiiiiiiii i, 77
Implementingthe Edit Menu 80
Implementing the Other Menus 84
Subclassing QTableltem, 88
5. Creating Custom Widgets 97
Customizing Qt Widgets i, 97
Subclassing QWidget 99
Integrating Custom Widgets with Qt Designer 108
Double Buffering 112

Part II: Intermediate Qt

6. Layout Management i, 135
BasicLayoutsoooiiiiiiiiiii 135
Splitters ..o e 140
Widget Stacks ... e 144
Scroll VIEWS ..ottt e 145
Dock Windowsooiiiiiiiii e et 150
Multiple Document Interface 152

7. Event Processing i 163
Reimplementing Event Handlers 163
Installing Event Filters, 168
Staying Responsive During Intensive Processing 171

8 2D and 3D Graphicsc i e 175
Painting with QPainter 175
GraphicswithQCanvascciiiiiiiiiiiiien.... 185
Printing ... e 198
Graphicswith OpenGL i, 209

9. Dragand Drop ...ttt e 215
Enabling Dragand Drop ... 215
Supporting Custom Drag Typesccoviiiiiiiinnnn.... 220
Advanced Clipboard Handling 224

vi

10.

11

12.

13.

14.

15.

16.

Input/Output 227

Reading and Writing BinaryData 227
Reading and Writing Text, 234
Handling Files and Directoriescoiiiiiii... 237
Inter-Process Communicationcooiiiia.... 239
Container Classesoiiiiiiiiiiiiiiniinnn. 243
/=170 243
LSt oo e 247
B =) o= 249
Pointer-Based Containersccoviiiiiiiieeennn... 251
QStringand QVariant i 254
Databasesooiuiiiiiii 261
Connecting and QUeryingc.ceeeeeeeiinnniinnnnnnn. 261
Presenting Data in Tabular Form 266
Creating Data-AwareForms 275
Networkingt 283
Using QFtp .o 283
Using QHEtD ..o e 289
TCP Networking with QSocketoit. 291
UDP Networking with QSocketDevice 301
XV L .o e 307
Reading XML with SAX et 307
Reading XML withDOMttt 312
Writing XML e 316
Internationalization 319
Working with Unicodecoiiiiiiiiiiiiiiiiinnn, 319
Making Applications Translation-Aware 323
Dynamic Language Switching 329
Translating Applications ..., 334
Providing OnlineHelp, 339
Tooltips, Status Tips, and “What’s This?”” Help 339
Using QTextBrowser as a Simple Help Engine 342
Using Qt Assistant for Powerful OnlineHelp 346

vii

17. Multithreading i 349

Working with Threads, 349
Communicating with the GUI Thread 359
Using Qt’s Classesin Non-GUIThreads 363
18. Platform-SpecificFeatures 367
Interfacing with Native APIs, 367
Using ActiveXttt s 371
Session Managementc.cc0iiiiiiiiiiiiiieea.... 384
Appendices
A Installing Qt e 393
ANoteonLicensingciiiiiiiiiiiiiiiiiiiinnn.. 393
Installing Qt/Windows ...ttt 394
Installing Qt/Macooiiii i i 395
Installing Qt/X11 397
B. Qt’'sClass Hierarchy oot 399
Index 403

viii

Foreword

Why Qt? Why do programmers like us choose Qt? Sure, there are the obvious
answers: Qt’s single-source compatibility, its feature richness, its C++ perfor-
mance, the availability of the source code, its documentation, the high-quality
technical support, and all the other items mentioned in Trolltech’s glossy mar-
keting materials. Thisis all very well, but it misses the most important point:
Qt is successful because programmers like it.

How come programmers like one technology, but dislike another? Personally,
I believe software engineers enjoy technology that feels right, but dislike ev-
erything that doesn’t. How else can we explain that some of the brightest pro-
grammers need help to program a VCR, or that most engineers seem to have
trouble operating the company’s phone system? I for one am perfectly capa-
ble of memorizing sequences of random numbers and commands, but if these
are required to control my answering machine, I'd prefer not to have one. At
Trolltech, our phone system forces us to hold the * key pressed down for two
seconds before we are allowed to type in the other person’s extension number.
If you forget to do this but start typing the extension immediately, you have
to dial the entire number again. Why “*’? Why not ‘#, or ‘1’, or ‘5’, or any of
the other twenty keys on the phone? Why two seconds and not one, or three,
or one and a half? Why anything at all? I find the phone so irritating that I
avoid using it whenever I can. Nobody likes having to do random things, espe-
cially when those random things apparently depend on some equally random
context you wish you didn’t have to know about in the first place.

Programming can be a lot like using our phone system, only worse. And this
is where Qt comes to the rescue. Qtisdifferent. For one thing, Qt makes sense.
And for another, Qt is fun. Qt lets you concentrate on your tasks. When Qt’s
original architects faced a problem, they didn’t just look for a good solution, or
a quick solution, or the simplest solution. They looked for the right solution,
and then they documented it. Granted they made mistakes, and granted some
of their design decisions didn’t pass the test of time, but they still got a lot of
things right, and what wasn’t right could and can be corrected. You can see
this by the fact that a system originally designed to bridge Windows 95 and
Unix/Motif now unifies modern desktop systems as diverse as Windows XP,
Mac OS X, and GNU/Linux with KDE.

Long before Qt became so popular and so widely used, the dedication of Qt’s
developers to finding the right solutions made Qt special. That dedication is
just as strong today and affects everyone who maintains and develops Qt. For
us, working on Qt is a responsibility and a privilege. We are proud of helping
to make your professional and open source lives easier and more enjoyable.

ix

One of the things that makes Qt a pleasure to use is its online documentation.
But the documentation’s focus is primarily on individual classes, with little
said about how to build sophisticated real-world applications. This excellent
book fills that gap. It shows you what Qt has to offer, how to program Qt
the “Qt way”, and how to get the best from Qt. The book will teach a C++
programmer how to program Qt, and provides enough advanced material to
satisfy experienced Qt programmers. The book is packed with good examples,
advice, and explanations, and will be the text that we use to induct all new
programmers who join Trolltech.

Nowadays, there are a vast number of commercial and free Qt applications
available for purchase or download. Some are specialized for particular
vertical markets, while others are aimed at the mass-market. Seeing so many
applications built with Qt fills us with pride and inspires us to make Qt even
better. And with the help of this book, there will be more and higher quality
Qt applications than ever before.

Matthias Ettrich
Oslo, Norway
November 2003

Preface

The Qt toolkit is a C++ class library and a set of tools for building multiplat-
form GUI programs using a “write once, compile anywhere” approach. Qt lets
programmers use a single source tree for applications that will run on Win-
dows 95 to XP, Mac OS X, Linux, Solaris, HP-UX, and many other versions of
Unix with X11. A version of Qt is also available for Embedded Linux, with the
same API.

The purpose of thisbook is to teach you how to write GUI programs using Qt 3.
The book starts with “Hello Qt” and quickly moves on to more advanced topics,
such as creating custom widgets and providing drag and drop. The text is
complemented by a CD that contains the source code of the example programs.
The CD also provides Qt and Borland C++ for Windows, Qt for Unix, and Qt
for Mac OS X. Appendix A explains how to install the software.

The book focuses on explaining good idiomatic Qt 3 programming techniques
rather than simply rehashing or summarizing Qt’s extensive online documen-
tation. And because we are involved in the development of Qt 4, we have tried
to ensure that most of what we teach here will still be valid and sensible for

Qt 4.

It is assumed that you have a basic knowledge of C++. The code examples use
a subset of C++, avoiding many C++ features that are rarely needed when
programming Qt. In the few places where a more advanced C++ construct is
unavoidable, it is explained as it is used.

Qt made its reputation as a multiplatform toolkit, but because of its intuitive
and powerful API, many organizations use Qt for single-platform develop-
ment. Adobe Photoshop Album isjust one example of a mass-market Windows
application written in Qt. Many sophisticated software systems in vertical
markets, such as 3D animation tools, digital film processing, electronic design
automation (for chip design), oil and gas exploration, financial services, and
medical imaging, are built with Qt. If you are making a living with a success-
ful Windows product written in Qt, you can easily create new markets in the
Mac OS X and Linux worlds simply by recompiling.

Qt is available under various licenses. If you want to build commercial
applications, you must buy a commercial license; if you want to build open
source programs, you can use a non-commercial Qt edition. (The editions of Qt
on the CD are non-commercial.) Qt is the foundation on which the K Desktop
Environment (KDE) and the many open source applications that go with it
are built.

xi

In addition to Qt’s hundreds of classes, there are add-ons that extend Qt’s
scope and power. Some of these products,like the Qt/Motif integration module
and Qt Script for Applications (QSA), are supplied by Trolltech, while others
are provided by companies and by the open source community. See http://
www. trolltech.com/products/3rdparty/ for information on Qt add-ons. Qt also
has a well-established and thriving user community that uses the gt-interest
mailing list; see http://lists.trolltech.com/ for details.

The book is divided into two parts. Part I covers all the concepts and practices
necessary for programming GUI applications using Qt. Knowledge of this
part alone is sufficient to write useful GUI applications. Part II covers central
Qt topics in more depth and provides more specialized and advanced material.
The chapters of Part II can be read in any order, but they assume familiarity
with the contents of Part I.

If you spot errors in the book, have suggestions for the next edition, or want
to give us feedback, we would be delighted to hear from you. You can reach us
at jasmin.blanchette@trolltech.com and mark.summerfieldetrolltech.com. The
errata will be placed on http://vig.prenhall.com/catalog/academic/product/
0,4096,0131240722,00.html.

xii

Acknowledgments

Our first acknowledgment goes to Eirik Chambe-Eng, Trolltech’s president.
Eirik not only enthusiastically encouraged us to write the book, he also
allowed us to spend a considerable amount of our work time writing it. Eirik
and Trolltech CEO Haavard Nord both read the manuscript and provided
valuable feedback. Their generosity and foresight was aided and abetted by
Matthias Ettrich, Trolltech’s lead developer and our boss. Matthias cheerfully
accepted our neglect of duty as we obsessed over the writing of this book and
gave us a lot of advice on good Qt programming style.

We asked two Qt customers, Paul Curtis and Klaus Schmidinger, to be our
external reviewers. Both are Qt experts with an amazing attention to tech-
nical detail, which they proved by spotting some very subtle errors in our
manuscript and suggesting numerous improvements.

Within Trolltech, alongside Matthias, our most stalwart reviewer was Regi-
nald Stadlbauer* His technical insight was invaluable, and he taught us how
to do some things in Qt that we didn’t even know were possible.

Our other key reviewers within Trolltech were Trenton Schulz, Andy Shaw,
and Andreas Aardal Hanssen. Trenton and Andy gave feedback on all aspects
of the book and were especially helpful regarding Qt/Mac and Qt/Windows.
Andreas gave us invaluable help refining Part 1.

In addition to the reviewers mentioned above, we received expert help from
Warwick Allison (2D graphics), Eirik Chambe-Eng (Qt’s history), Matthias
Ettrich (event processing and custom widgets), Harald Fernengel (databas-
es), Volker Hilsheimer (ActiveX), Bradley Hughes (multithreading), Trond
Kjernasen (3D graphics and databases), Lars Knoll (2D graphics), Sam Mag-
nuson (gmake), Dimitri Papadopoulos (Qt/X11), Paul Olav Tvete (custom wid-
gets and Qt/Embedded), Rainer Schmid (networking and XML), and Gunnar
Sletta (event processing).

Extra thanks are due to Trolltech’s support team for helping to keep our
support load under control while the book consumed so much of our time, and
to Trolltech’s system administrators for keeping our machines running and
our networks communicating throughout the project.

We are also grateful to Troy Kitch from Borland for giving us permission to
include Borland C++ compilers on the accompanying CD, and to the SQLite
developers for putting their database into the public domain.

*Reginald has now moved to Germany, where he co-founded froglogic, a software consultancy.

xiii

On the production side, Rainer Schmid led the team that created the accom-
panying CD, ably supported by Harald Fernengel and Andy Shaw. Troll-
tech’s Cathrine Bore handled the contracts and legalities on our behalf. Jeff
Kingston, author of the Lout typesetting tool, gave us advice and enhanced the
tool in the light of our feedback. Jill Harry of Prentice Hall had faith in the
project from the start and ensured that all the practical matters were smooth-
ly handled, leaving us free to concentrate on the writing. And Lisa Iarkowski
turned our camera-ready manuscript into the beautiful volume you now hold
in your hands.

Xiv

A Brief History of Qt

The Qt toolkit first became publicly available in May 1995. It was initially
developed by Haavard Nord (Trolltech’s CEO) and Eirik Chambe-Eng (Troll-
tech’s president). Haavard and Eirik met each other at the Norwegian Insti-
tute of Technology in Trondheim, Norway, where they both graduated with
master’s degrees in computer science.

Haavard’s interest in C++ GUI development began in 1988 when he was com-
missioned by a Swedish company to design and implement a C++ GUI toolk-
it. A couple of years later, in the summer of 1990, Haavard and Eirik were
working together on a C++ database application for ultrasound images. The
system needed to be able to run with a GUI on Unix, Macintosh, and Windows.
One day that summer, Haavard and Eirik went outside to enjoy the sunshine,
and as they sat on a park bench, Haavard said, “We need an object-oriented
display system.” The resulting discussion laid the intellectual foundation for
the object-oriented multiplatform GUI toolkit they would soon go on to build.

In 1991, Haavard started writing the classes that eventually became Qt, col-
laborating with Eirik on the design. The following year, Eirik came up the idea
for “signals and slots”, a simple but powerful GUI programming paradigm.
Haavard took the idea and produced a hand-coded implementation. By 1993,
Haavard and Eirik had developed Qt’s first graphics kernel and were able to
implement their own widgets. At the end of the year, Haavard suggested that
they go into business together to build “the world’s best C++ GUI toolkit”.

The year 1994 began inauspiciously with the two young programmers wanting
to enter a well established market, with no customers, an unfinished product,
and no money. Fortunately, both their wives had work and were willing to sup-
port their husbands for the two years Eirik and Haavard expected to need to
develop the product and start earning an income.

They chose ‘Q’ as the class prefix because the letter looked beautiful in Haa-
vard’s Emacs font. The ‘t’ was added to stand for “toolkit”, inspired by “Xt”,
the X Toolkit. The company was incorporated on 4 March 1994, originally as
“Quasar Technologies”, then as “Troll Tech”, and today as “Trolltech”.

In April 1995, thanks to a contact made through one of Haavard’s University
professors, the Norwegian company Metis gave them a contract to develop
software based on Qt. Around this time, Trolltech hired Arnt Gulbrandsen,*
who devised and implemented an ingenious documentation system as well as
contributing to Qt’s code.

*Arnt left the company a few years ago to pursue his career in Germany.

XV

On 20 May 1995, Qt 0.90 was uploaded to sunsite.unc.edu. Six days later, the
release was announced on comp.os.linux.announce. This was Qt’s first public
release. Qt could be used for both Windows and Unix development, offering
the same API on both platforms. Qt was available under two licenses from
day one: A commercial license was required for commercial development
and a free software edition was available for open source development. The
Metis contract kept Trolltech afloat, while for ten long months no one bought
a commercial Qt license.

In March 1996, the European Space Agency became the second Qt customer,
with a purchase of ten commercial licenses. With unwavering faith, Eirik
and Haavard hired another developer. Qt 0.97 was released at the end of May,
and on 24 September 1996, Qt 1.0 came out. By the end of the year, Qt had
reached version 1.1; eight customers, each in a different country, had bought
18licenses between them. This year also saw the founding of the KDE project,
led by Matthias Ettrich.

Qt 1.2 wasreleased in April 1997. Matthias Ettrich’s decision to use Qt to build
KDE helped Qt become the de-facto standard for C++ GUI development on
Linux. Qt 1.3 was released in September 1997.

Matthias joined Trolltech in 1998, and the last major Qt 1 release, 1.40, was
made in September of that year. Qt 2.0 was released in June 1999. Qt 2 had
many major architectural changes and was a much stronger and more mature
product than its predecessor. It also featured forty new classes and Unicode
support. Qt 2 had a new open source license, the Q Public License (QPL),
which complied to the Open Source Definition. In August 1999, Qt won the
LinuxWorld award for best library/tool. Around this time, Trolltech Pty Ltd
(Australia) was established.

Trolltech released Qt/Embedded in 2000. It was designed to run on Embedded
Linux devices and provided is own window system as a lightweight replace-
ment for X11. Both Qt/Embedded and Qt/X11 were now offered under the
widely used GNU General Public License (GPL) as well as under commercial
licenses. By the end of 2000, Trolltech had established Trolltech Inc. (USA)
and had released the first version of Qtopia, an environment for handheld
devices. Qt/Embedded won the LinuxWorld “Best Embedded Linux Solution”
award in both 2001 and 2002.

Qt 3.0 was released in 2001. Qt was now available on Windows, Unix, Linux,
Embedded Linux, and Mac OS X. Qt 3.0 provided 42 new classes and the code
surpassed 500,000 lines. Qt 3.0 won the Software Development Times “Jolt
Productivity Award” in 2002.

Trolltech’s sales have doubled year on year since the company’s birth. This
success is a reflection both of the quality of Qt and of how enjoyable it is to
use. For most of the company’s existence, sales and marketing were handled
by just a couple of people. Yet, in less than a decade, Qt has gone from being
a “secret” product, known only to a select group of professionals, to having
thousands of customers and tens of thousands of open source developers all
around the world.

XVi

Part I

Basic Qt

e Hello Q¢
* Making Connections

® Using the Reference
Documentation

Getting Started

This chapter shows how to combine basic C++ with the functionality provided
by Qt to create a few small graphical user interface (GUI) applications. This
chapter also introduces two key Qt ideas: “signals and slots” and layouts. In
Chapter 2, we will go into more depth, and in Chapter 3, we will start building
a realistic application.

Hello Qt

Here’s a very simple Qt program:

1 #include <gapplication.h>
2 #include <glabel.h>

3 int main(int argc, char *argv([])
{
QApplication app(argc, argv);
QLabel *label = new QLabel ("Hello Qt!", 0);
app.setMainWidget (label) ;
label->show() ;
return app.exec();

O W 0N OB

10 }
We will first study it line by line, then we will see how to compile and run it.
Lines 1 and 2 include the definitions of the QApplication and QLabel classes.

Line 5 creates a QApplication object to manage application-wide resources.
The gapplication constructor requires argc and argv because Qt supports a
few command-line arguments of its own.

Line 6 creates a QLabel widget that displays “Hello Qt!”. In Qt terminology, a
widget is a visual element in a user interface. Buttons, menus, scroll bars, and
frames are all examples of widgets. Widgets can contain other widgets; for

3

4 1. Getting Started

example, an application window is usually a widget that contains a QMenuBar, a
QToolBar, a QStatusBar, and some other widgets. The 0 argument to the QLabel
constructor (a null pointer) means that the widget is a window in its own right,
not a widget inside another window.

Line 7makes thelabel the application’s main widget. When the user closes the
main widget (by clicking X in the window’s title bar, for example), the program
terminates. Without a main widget, the program would keep running in the
background even after the user has closed the window.

Line 8 makes the label visible. Widgets are always created hidden, so that we
can customize them before showing them, thereby avoiding flicker.

Line 9 passes control of the application on to Qt. At this point, the program
enters a kind of stand-by mode, where it waits for user actions such as mouse
clicks and key presses.

User actions generate events (also called “messages”) to which the program
can respond, usually by executing one or more functions. In this respect, GUI
applications differ drastically from conventional batch programs, which typi-
cally process input, produce results, and terminate without human interven-
tion.

M hello [= |[B][X)

Figure 1.1. Hello on Windows XP

It is now time to test the program on your machine. First, you will need to in-
stall Qt 3.2 (or a later Qt 3 release), a process that is explained in Appendix A.
From now on, we will assume that you have a correctly installed copy of Qt 3.2
and that Qt’sbin directory isin your PATH environment variable. (On Windows,
this is done automatically by the Qt installation program, so you don’t need to
worry about it.)

You will also need the Hello program’s source code in a file called hello.cpp in
a directory called hello. You can type in hello.cpp yourself, or copy it from the
CD provided with this book, where it is available as \examples\chap01\hello\
hello.cpp.

From a command prompt, change directory to hello, then type
gmake -project

to create a platform-independent project file (hello.pro), then type
gmake hello.pro

to create a platform-specific makefile from the project file. Run make to build
the program, and run the program by typing hello on Windows, . /hello on
Unix, and open hello.app on Mac OS X. If you are using Microsoft Visual C++,

Hello Qt 5

you will need to run nmake instead of make. Alternatively, you can create a
Visual Studio project file from hello.pro by typing

gmake -tp vc hello.pro

and then build the program in Visual Studio.

= hello [2 |[B]fX]

Figure 1.2. A label with basic HTML formatting
Now let’s have some fun: We will brighten up the label by using some simple
HTML-style formatting. This can be done by replacing the line
QLabel *label = new QLabel("Hello Qt!", 0);
with

QLabel *label = new QLabel ("<h2><i>Hello</i> "
v"Qt!</h2>", 0);

and rebuilding the application.

Making Connections

The next example illustrates how to respond to user actions. The application
consists of a button that the user can click to quit. The source code is very
similar to Hello, except that we are using a QPushButton instead of a QLabel as
our main widget, and we are connecting a user action (clicking a button) to a
piece of code.

This application’s source code is on the CD in the file \examples\chap0l\quit\
quit.cpp.

B quit E@[’S_TI

Figure 1.3. The Quit application

-

#include <gapplication.h>
#include <gpushbutton.h>

n

int main(int argc, char *argv(])
{
QApplication app(argc, argv);
QPushButton *button = new QPushButton("Quit", 0);

o oW

6 1. Getting Started

7 QObject::connect (button, SIGNAL(clicked()),
8 &app, SLOT(quit()));

9 app.setMainWidget (button) ;

10 button->show() ;

11 return app.exec();

12}

Qt’s widgets emit signals to indicate that a user action or a change of state has
occurred.* For instance, QPushButton emits a clicked() signal when the user
clicks the button. A signal can be connected to a function (called a slot in that
context), so that when the signal is emitted, the slot is automatically executed.
In our example, we connect the button’s clicked() signal to the gapplication
object’s quit () slot. The SIcNAL() and SLOT() macros are part of the syntax;
they are explained in more detail in the next chapter.

We will now build the application. We assume that you have created a direc-
tory called quit containing quit.cpp. Run gmake in the quit directory to gener-
ate the project file, then run it again to generate a makefile:

gmake -project
gmake quit.pro

Now build the application, and run it. If you click Quit, or press Space (which
presses the button), the application will terminate.

The next example demonstrates how to use signals and slots to synchronize
two widgets. The application asks for the user’s age, which the user can enter
by manipulating either a spin box or a slider.

I Enter Your Age EEJE|

LT |

Figure 1.4. The Age application

The application consists of three widgets: a QSpinBox, a QSlider, and a QHBox
(horizontal layout box). The QHBox is the application’s main widget. The
QSpinBox and the QSlider are rendered inside the QHBox; they are children of
the QHBox.

Figure 1.5. The Age application’s widgets

*Qt signals are unrelated to Unix signals. In this book, we are only concerned with Qt signals.

Making Connections 7

#include <gapplication.h>
#include <ghbox.h>
#include <gslider.h>
#include <gspinbox.h>

B WD =

5 int main(int argc, char *argv[])

6 {

7 QApplication app(argc, argv);

8 QHBox *hbox = new QHBox(0);

9 hbox->setCaption("Enter Your Age");

10 hbox->setMargin(6) ;

11 hbox->setSpacing(6) ;

12 QSpinBox *spinBox = new QSpinBox(hbox) ;

13 QSlider *slider = new QSlider(Qt::Horizontal, hbox);
14 spinBox->setRange (0, 130);

15 slider->setRange (0, 130);

16 QObject::connect (spinBox, SIGNAL(valueChanged(int)),
17 slider, SLOT(setValue(int)));

18 QObject::connect(slider, SIGNAL(valueChanged(int)),

19 spinBox, SLOT(setValue(int)));

20 spinBox->setValue(35);

21 app.setMainWidget (hbox) ;

22 hbox->show() ;

23 return app.exec();

24 '}

Lines 8 to 11 set up the gHBox.* We call setCaption() to set the text displayed
in the window’s title bar. Then we put some space (6 pixels) around and in
between the child widgets.

Lines 12 and 13 create a QSpinBox and a QSlider with the QHBox as the parent.

Even though we didn’t set the position or size of any widget explicitly, the
QSpinBox and QS1ider appear nicely laid out side by side inside the QHBox. This
is because QHBox automatically assigns reasonable positions and sizes to its
children based on their needs. Qt provides many classes like QHBox to free us
from the chore of hard-coding screen positions in our applications.

Lines 14 and 15 set the valid range for the spin box and the slider. (We can
safely assume that the user is at most 130 years old.) The two connect () calls
shown in lines 16 to 19 ensure that the spin box and the slider are synchro-
nized so that they always show the same value. Whenever the value of one
widget changes, its valueChanged (int) signal is emitted, and the setvalue(int)
slot of the other widget is called with the new value.

Line 20 sets the spin box value to 35. When this happens, the QSpinBox emits
the valueChanged(int) signal with an int argument of 35. This argument is

*If you get a compiler error on the QHBox constructor, it means that you are using an older version
of Qt. Make sure that you are using Qt 3.2.0 or a later Qt 3 release.

8 1. Getting Started

passed tothe QSlider’s setValue(int) slot, which sets the slider value to 35. The
slider then emits the valueChanged(int) signal, because its own value changed,
triggering the spin box’s setvalue(int) slot. But at this point, setvValue(int)
doesn’t emit any signal, since the spin box value is already 35. This prevents
infinite recursion. Figure 1.6 summarizes the situation.

1. A

setValue(35)
v
2. A
valueChanged(35)
________________________ \
setValue(35)
3. 357 ORNIORTTRNNNNY
vaIueCha_mged(SS)
g
setValue(35)

v
4. O

Figure 1.6. Changing one value changes both

Line 22 shows the gHBox and its two child widgets.

Qt’s approach to building user interfaces is simple to understand and very flex-
ible. The most common pattern that Qt programmers use is to instantiate the
required widgets and then set their properties as necessary. Programmers add
the widgets to layouts, which automatically take care of sizing and positioning.
User interface behavior is managed by connecting widgets together using Qt’s
signals and slots mechanism.

Using the Reference Documentation

Qt’s reference documentation is an essential tool for any Qt developer, since
it covers every class and function in Qt. (Qt 3.2 includes over 400 public
classes and over 6000 functions.) This book makes use of many Qt classes and
functions, but it doesn’t mention them all, nor does it provide all the details of
those it does mention. To get the most benefit from Qt, you should familiarize
yourself with the Qt reference documentation.

Using the Reference Documentation 9

Widget Styles

The screenshots we have seen so far have been taken on Windows XP,
but Qt applications look native on every supported platform. Qt achieves
this by emulating the platform’s look and feel, rather than wrapping a
particular platform or toolkit’s widget set.

=10l xd 1ol xd
= 3— EmE] AN |
Windows Motif
=10l x| =101 |
S == _NEeamcl 0 |

MotifPlus CDE
-0l _1oi
[E e EE |
Platinum SGI

Figure 1.7. Styles available everywhere

Qt application users can override the default style by using the -style
command-line option. For example, to launch the Age application with
Platinum style on Unix, simply type

./age -style=Platinum

on the command line.

B Enter Your Age |Z||E|[$__(| © O © Enter Your Age

w4 i 35 ®

Windows XP Mac
Figure 1.8. Platform-specific styles

Unlike the other styles, the Windows XP and Mac styles are only available
on their native platforms, since they rely on the platforms’ theme engines.

The documentation is available in HTML format in Qt’s doc\html directo-
ry and can be read using any web browser. You can also use @t Assistant,
the Qt help browser, whose powerful search and indexing features make it
quicker and easier to use than a web browser. To launch Q¢ Assistant, click
Qt 3.2.x|Qt Assistant in the Start menu on Windows, type assistant on the com-
mand line on Unix, or double-click assistant in the Mac OS X Finder.

10 1. Getting Started

) Ot Assistant by Trolltech - QApplication Class - E||5|

Flle Edit wWew Go Bookmarks Help

e BasacvE@eéd®

| Home | & Classes | Main Classes | énnotated | Grouped Classes | Q ﬁ ﬂ

Contents | haex | Bookmerks | Search | || Functions

Liook For

|asoptcatn QApplication Class Reference
Q_ASSERT =]) _)
[_CHECK_FTR The G&pplication class manages the GUI application’s control flow and main
Qccel - settings. More...

Oesessible #inelvode <gapulicationhs

Qgccessiblelnterface

QgcessibleOhbject Inherits &0bject.

aeton List of allmermber furctions.

action-examples

GactionGraug -l .

- Public Members

+ QApplication (int & arge, char ™ argy)
+ QApplication { int & arge, char ™ argy, bool GU lenabled)

Gouastyle * enum Type { Ty, GuiClient, GuiServer }
Qarray Class Reference (obsolete) * QApplication { int & arge, char * argy, Tepe type)
QzciCache + Qdpplication (| Display * dpy, HAMDLE wisual = 0, HANDLE colormap = 0)
GAsciiCachelterator + QApplication { Display ™ dpy, int arge, char = argy, HANDLE visual =0,
QsciiDict - HANDLE colormag = 0)
* virtual ~Q@Application ()
 — | _’lJ + int v {3 conat hd
| | 3
Momedasminseyyt-3. 1 idochtmlindes html v

Figure 1.9. Qt’s documentation in Q¢ Assistant

The links in the “API Reference” section on the home page provide different
ways of navigating Qt’s classes. The “All Classes” page lists every classin Qt’s
API. The “Main Classes” page lists only the most commonly used Qt classes.
As an exercise, you might want to look up the classes and functions that we
have used in this chapter. Note that inherited functions are documented in
the base class; for example, QpushButton has no show() function of its own, but
it inherits one from its ancestor Qwidget. Figure 1.10 shows how the classes we
have seen so far relate to each other.

Qt
QOk:)ject
QAppIIication QWi:dget
QBlﬂtton QFr%ame QSIlider QSpilnBox
QPushButton QHlBox QLzlalbeI

Figure 1.10. Inheritance tree for the Qt classes seen so far

The reference documentation for the current version of Qt and for some
earlier versionsis available online at http://doc. trolltech.com/. This site also
hosts selected articles from Q¢ Quarterly, the Qt programmers’ newsletter sent
to all commercial licensees.

* Subclassing QDialog

e Signals and Slots in Depth

* Rapid Dialog Design

* Shape-Changing Dialogs

* Dynamic Dialogs

* Built-in Widget and Dialog
Classes

Creating Dialogs

This chapter will teach you how to create dialog boxes using Qt. They are
called dialog boxes, or simply “dialogs”, because they provide a means by
which users and applications can “talk to” each other.

Dialogs present users with options and choices, and allow them to set the op-
tions to their preferred values and to make their choice. Most GUI applica-
tions consist of a main window with a menu bar and toolbar, along with dozens
of dialogs that complement the main window. It is also possible to create dia-
log applications that respond directly to the user’s choices by performing the
appropriate actions (for example, a calculator application).

We will create our first dialog purely by writing code to show how it is done.
Then we will see how to build dialogs using @t Designer, Qt’s visual design
tool. Using @t Designer is a lot faster than hand-coding and makes it simple
to test different designs and to change designs later.

Subclassing QDialog

Our first example is a Find dialog written entirely in C++. We will implement
the dialog as a class in its own right. By doing so, we make it an independent,
self-contained component, with its own signals and slots.

[2][=][0l]

Fircl whiat: [Waldo

Firndd
¥ Match case
Close |
Il

[T Search backward

Figure 2.1. Find dialog on Linux (KDE)

11

12 2. Creating Dialogs

The source code is spread across two files: finddialog.hand finddialog. cpp. We
will start with finddialog.h.

1 #ifndef FINDDIALOG_H
2 #define FINDDIALOG_H

3 #include <gdialog.h>

class QCheckBox;
class QLabel;
class QLineEdit;
class QPushButton;

N o o

Lines 1 and 2 (and 27) prevent the header file from multiple inclusions.

Line 3 includes the definition of QpDialog, the base class for dialogs in Qt.
QDialog inherits Qwidget.

Lines 4 to 7 are forward declarations of the Qt classes that we will use to im-
plement the dialog. A forward declaration tells the C++ compiler that a class
exists, without giving all the detail that a class definition (usually located in a
header file of its own) provides. We will say more about this shortly.

We then define FindDialog as a subclass of QDialog:

8 class FindDialog : public QDialog

9 {

10 Q_OBJECT

11 public:

12 FindDialog (QWidget *parent = 0, const char *name = 0);

The _0BJECT macro at the beginning of the class definition is necessary for all
classes that define signals or slots.

The FindDialog constructor is typical of Qt widget classes. The parent param-
eter specifies the parent widget, and the name parameter gives the widget a
name. The name is optional; it is primarily used for debugging and testing.

13 signals:
14 void findNext (const QString &str, bool caseSensitive);
15 void findPrev(const QString &str, bool caseSensitive);

The signals section declares two signals that the dialog emits when the user
clicks the Find button. If the Searchbackward option is enabled, the dialog emits
findPrev(); otherwise, it emits findNext ().

The signals keyword is actually a macro. The C++ preprocessor converts it
into standard C++ before the compiler sees it.

16 private slots:
17 void findClicked();
18 void enableFindButton(const QString &text);

19 private:

20 QLabel *label;

21 QLineEdit *lineEdit;

22 QCheckBox *caseCheckBox;

Subclassing QDialog 13

23 QCheckBox *backwardCheckBox;
24 QPushButton *findButton;

25 QPushButton *closeButton;

26 };

27 #endif

In the class’s private section, we declare two slots. To implement the slots, we
will need to access most of the dialog’s child widgets, so we keep pointers to
them as well. The slots keyword is, like signals, a macro that expands into a
construct that the C++ compiler can digest.

Since all the variables are pointers and we don’t use them in the header file,
the compiler doesn’t need the full class definitions; forward declarations are
sufficient. We could have included the relevant header files (<qcheckbox.h>,
<glabel.h>, etc.) instead, but using forward declarations when it is possible
makes compiling somewhat faster.

We will now look at finddialog.cpp, which contains the implementation of the
FindDialog class:

#include <gcheckbox.h>
#include <glabel.h>
#include <glayout.h>
#include <glineedit.h>
#include <gpushbutton.h>

g~ wnNn =

6 #include "finddialog.h"

First, we include the header files for all the Qt classes we use, in addition to
finddialog.h. For most Qt classes, the header file is a lower-case version of the
class name with a .h extension.

7 FindDialog::FindDialog(QWidget *parent, const char *name)

8 : QDialog(parent, name)

9 {

10 setCaption(tr("Find"));

11 label = new QLabel (tr("Find &what:"), this);

12 lineEdit = new QLineEdit(this);

13 label->setBuddy(lineEdit) ;

14 caseCheckBox = new QCheckBox(tr("Match &case"), this);
15 backwardCheckBox = new QCheckBox(tr("Search &backward"), this);
16 findButton = new QPushButton(tr("&Find"), this);

17 findButton->setDefault (true);

18 findButton->setEnabled(false);

19 closeButton = new QPushButton(tr("Close"), this);

On line 8, we pass on the parent and name parameters to the base class con-
structor.

On line 10, we set the window’s caption to “Find”. The tr () function around the
string marks it for translation to other languages. Itisdeclaredin Qobject and
every subclass that contains the Q_0BJECT macro. It’s a good habit to surround

14 2. Creating Dialogs

every user-visible string with a tr(), even if you don’t have immediate plans
for translating your applications to other languages. Translating Qt applica-
tions is covered in Chapter 15.

Then we create the child widgets. We use ampersands (‘&’) to indicate ac-
celerator keys. For example, line 16 creates a Find button, which the user can
activate by pressing Alt+F. Ampersands can also be used to control focus: On
line 11 we create a label with an accelerator key (Alt+W), and on line 13 we set
the label’s buddy to be the line editor. A buddy is a widget that accepts the fo-
cus when the label’s accelerator key is pressed. So when the user presses Alt+W
(the label’s accelerator), the focus goes to the line editor (the buddy).

On line 17, we make the Find button the dialog’s default button by calling
setDefault (true).* The default button is the button that is pressed when
the user hits Enter. On line 18, we disable the Find button. When a widget is
disabled, it is usually shown grayed out and will not interact with the user.

20 connect (lineEdit, SIGNAL(textChanged(const QString &)),
21 this, SLOT(enableFindButton(const QString &)));
22 connect (findButton, SIGNAL(clicked()),

23 this, SLOT(findClicked()));

24 connect (closeButton, SIGNAL(clicked()),

25 this, SLOT(close()));

The private slot enableFindButton(const QString &) is called whenever the
text in the line editor changes. The private slot findclicked() is called when
the user clicks the Find button. The dialog closes itself when the user clicks
Close. The close() slot is inherited from QwWidget, and its default behavior is
to hide the widget. We will look at the code for the enableFindButton() and
findClicked() slots later on.

Since Q0bject is one of FindDialog’s ancestors, we can omit the Q0bject: : prefix
in front of the connect () calls.

26 QHBoxLayout *topLeftLayout = new QHBoxLayout;
27 topLeftLayout->addWidget (label) ;

28 topLeftLayout->addWidget (1ineEdit) ;

29 QVBoxLayout *leftLayout = new QVBoxLayout;

30 leftLayout->addLayout (topLeftLayout) ;

31 leftLayout->addwWidget (caseCheckBox) ;

32 leftLayout->addwWidget (backwardCheckBox) ;

33 QVBoxLayout *rightLayout = new QVBoxLayout;
34 rightLayout->addWidget (findButton) ;

35 rightLayout->addwWidget (closeButton) ;

36 rightLayout->addStretch(1);

37 QHBoxLayout *mainLayout = new QHBoxLayout(this);
38 mainLayout->setMargin(11);

*Qt provides TRUE and FALSE for all platforms and uses them throughout as synonyms for the
standard true and false. Nevertheless, there is no reason to use the upper-case versions in your
own code unless you need to use an old compiler that doesn’t support true and false.

Subclassing QDialog 15

39 mainLayout->setSpacing(6) ;

40 mainLayout->addLayout (leftLayout) ;
41 mainLayout->addLayout (rightLayout) ;
42 '}

Finally, we lay out the child widgets using layout managers. A layout manager
is an object that manages the size and position of widgets. Qt provides three
layout managers: QHBoxLayout lays out widgets horizontally from left to right
(right to left for some cultures), QvBoxLayout lays out widgets vertically from
top to bottom, and QGridLayout lays out widgets in a grid.

Layouts can contain both widgets and other layouts. By nesting QHBoxLayouts,
QVBoxLayouts, and QCGridLayouts in various combinations, it is possible to build
very sophisticated dialogs.

leftLayout ———-» QlLabel QLineEdit QPushButton < rightLayout
topLeftlayout —H—i» - - oot QPushBut | ei— mainLayout
o b ushButton | ;!
e QCheckBox o P
¥ QCheckBox L E: | spacer

Figure 2.2. The Find dialog’s layouts

For the Find dialog, we use two QHBoxLayouts and two QVBoxLayouts, as shown
in Figure 2.2. The outer layout is the main layout; it is constructed with the
FindDialog object (this) as its parent and is responsible for the dialog’s entire
area. The other three layouts are sub-layouts. The little “spring” at the bottom
right of Figure 2.2 is a spacer item (or “stretch”). It uses up the empty space
below the Find and Close buttons, ensuring that these buttons occupy the top
of their layout.

One subtle aspect of the layout manager classes is that they are not widgets.
Instead, they inherit QLayout, which in turn inherits Qobject. In the figure, wid-
gets are represented by solid outlines and layouts are represented by dashed
outlines to highlight the difference between them. In a running application,
layouts are invisible.

Although layout managers are not widgets, they can have a parent (and chil-
dren). The meaning of “parent” is slightly different for layouts than for wid-
gets. If alayout is constructed with a widget as its parent (as we did for main-
Layout), the layout automatically installs itself on the widget. If a layout is
constructed with no parent (as we did for topLeftLayout, leftLayout,and right-
Layout), the layout must be inserted into another layout using addLayout ().

16 2. Creating Dialogs

Qt’s parent—child mechanism is implemented in Q0bject, the base class of both
Qwidget and QLayout. When we create an object (a widget, layout, or other kind)
with a parent, the parent adds the object to the list of its children. When the
parent is deleted, it walks through its list of children and deletes each child.
The children themselves then delete all of their children, and so on recursively
until none remain.

The parent—child mechanism simplifies memory management a lot, reducing
the risk of memory leaks. The only objects we must delete explicitly are the
objects we create with new and that have no parent. And if we delete a child
object before its parent, Qt will automatically remove that object from the
parent’s list of children.

For widgets, the parent has an additional meaning: Child widgets are shown
within the parent’s area. When we delete the parent widget, not only does the
child vanish from memory, it also vanishes from the screen.

When we insert a layout into another using addLayout (), the inner layout is
automatically made a child of the outer layout, to simplify memory manage-
ment. In contrast, when we insert a widget into a layout using addwidget (),
the widget doesn’t change parent.

Figure 2.3 shows the parentage of the widgets and layouts. The parentage can
easily be deduced from the FindDialog constructor code by looking at the lines
that contain a new or an addLayout () call. The important thing to remember is
that the layout managers are not parents of the widgets they manage.

FindDialog

—— QLabel (label)

—— QLineEdit (lineEdit)

—— QCheckBox (caseCheckBox)

—— QCheckBox (backwardCheckBox)
—— QPushButton (findButton)

—— QPushButton (closeButton)

— QHBoxLayout (mainLayout)
QVBoxLayout (leftLayout)
L QHBoxLayout (topLeftLayout)
QVBoxLayout (rightLayout)

Figure 2.3. The Find dialog’s parent—child relationships

In addition to the layout managers, Qt provides some layout widgets: QHBox
(which we used in Chapter 1), QvBox, and 0Grid. These classes serve both as
parents and as layout managers for their child widgets. The layout widgets
are more convenient to use than layout managers for small examples, but they
are less flexible and require more resources.

Subclassing QDialog 17

This completes the review of Findbialog’s constructor. Since we used new to
create the dialog’s widgets and layouts, it would seem that we need to write
a destructor that calls delete on each of the widgets and layouts we created.
But this isn’t necessary, since Qt automatically deletes child objects when the
parent is destroyed, and the objects we allocated with new are all descendants
of the FindDialog.

Now we will look at the dialog’s slots:

43 void FindDialog::findClicked()

44 {

45 QString text = lineEdit->text();

46 bool caseSensitive = caseCheckBox->isOn() ;
47 if (backwardCheckBox->isOn())

48 emit findPrev(text, caseSensitive);

49 else

50 emit findNext (text, caseSensitive);

51 }

52 void FindDialog::enableFindButton(const QString &text)
53 {

54 findButton->setEnabled(!text.isEmpty());

55 }

The findclicked() slot is called when the user clicks the Find button. It emits
the findprev() or the findNext () signal, depending on the Search backward op-
tion. The enit keyword is specific to Qt;like other Qt extensions, it is converted
into standard C++ by the C++ preprocessor.

The enableFindButton() slot is called whenever the user changes the text in
the line editor. It enables the button if there is some text in the editor, and
disables it otherwise.

These two slots complete the dialog. We can now create a main. cpp file to test
our FindDialog widget:

1 #include <gapplication.h>
2 #include "finddialog.h"

3 int main(int argc, char *argv[])

4 |

5 QApplication app(argc, argv);

6 FindDialog *dialog = new FindDialog;
7 app.setMainWidget (dialog) ;
8 dialog->show() ;
9 return app.exec();
0

10}

To compile the program, run gmake as usual. Since the FindDialog class
definition contains the g_0BJECT macro, the makefile generated by gmake will
include special rules to run moc, Qt’s meta-object compiler.

For moc to work correctly, we must put the class definition in a header file,
separate from the implementation file. The code generated by moc includes

18 2. Creating Dialogs

this header file and adds some magic of its own.

Classes that use the 9_0BJECT macro must have moc run on them. This isn’t a
problem because gmake automatically adds the necessary rules to the makefile.
But if you forget to regenerate your makefile using gqmake and moc isn’t run, the
linker will complain that some functions are declared but not implemented.
The messages can be fairly obscure. GCC produces warnings like this one:

finddialog.o(.text+0x28): undefined reference to
‘FindDialog::QPaintDevice virtual table’

Visual C++’s output starts like this:

finddialog.obj : error LNK2001: unresolved external symbol
"public:~virtual bool _ thiscall FindDialog::qgt_property(int,
int,class QVariant *)"

If this ever happens to you, run gmake again to update the makefile, then
rebuild the application.

Now run the program. Verify that the accelerator keys Alt+W, Alt+C, Alt+B, and
Alt+F trigger the correct behavior. Press Tab to navigate through the widgets
with the keyboard. The default tab order is the order in which the widgets
were created. This can be changed by calling Qwidget: : setTabOrder ().

Providing a sensible tab order and keyboard accelerators ensures that users
who don’t want to (or cannot) use a mouse are able to make full use of the
application. Full keyboard control is also appreciated by fast typists.

In Chapter 3, we will use the Find dialog inside a real application, and we will
connect the findPrev() and findNext () signals to some slots.

Signals and Slots in Depth

The signals and slots mechanism is fundamental to Qt programming. It
enables the application programmer to bind objects together without the
objects knowing anything about each other. We have already connected some
signals and slots together, declared our own signals and slots, implemented
our own slots, and emitted our own signals. Let’s take a moment to look at the
mechanism more closely.

Slots are almost identical to ordinary C++ member functions. They can be
virtual, they can be overloaded, they can be public, protected, or private,
and they can be directly invoked like any other C++ member functions. The
difference is that a slot can also be connected to a signal, in which case it is
automatically called each time the signal is emitted.

The connect () statement looks like this:

connect (sender, SIGNAL(signal), receiver, SLOT(slot));

where sender and receiver are pointers to Q0bjects and where signal and slot

Signals and Slots in Depth 19

are function signatures without parameter names. The S16NAL() and SLOT()
macros essentially convert their argument to a string.

In the examples we have seen so far, we have always connected different
signals to different slots. There are more possibilities to explore:

* One signal can be connected to many slots:

connect(slider, SIGNAL(valueChanged(int)),

spinBox, SLOT(setValue(int)));
connect(slider, SIGNAL(valueChanged(int)),

this, SLOT(updateStatusBarIndicator(int)));

When the signal is emitted, the slots are called one after the other, in an
arbitrary order.

¢ Many signals can be connected to the same slot:

connect (lcd, SIGNAL(overflow()),
this, SLOT(handleMathError()));
connect (calculator, SIGNAL(divisionByzero()),
this, SLOT(handleMathError()));

When either signal is emitted, the slot is called.
* A signal can be connected to another signal:

connect (lineEdit, SIGNAL(textChanged(const QString &)),
this, SIGNAL(updateRecord(const QString &)));

When the first signal is emitted, the second signal is emitted as well.
Apart from that, signal-signal connections are indistinguishable from
signal—slot connections.

e Connections can be removed:

disconnect(lcd, SIGNAL(overflow()),
this, SLOT(handleMathError()));

This is rarely needed, because Qt automatically removes all connections
involving an object when that object is deleted.

When connecting a signal to a slot (or to another signal), they must both have
the same parameter types in the same order:

connect (ftp, SIGNAL(rawCommandReply(int, const QString &)),
this, SLOT(processReply(int, const QString &)));

Exceptionally, if a signal has more parameters than the slot it is connected to,
the additional parameters are simply ignored:

connect (ftp, SIGNAL(rawCommandReply(int, const QString &)),
this, SLOT(checkErrorCode(int)));

If the parameter types are incompatible, or if the signal or the slot doesn’t
exist, Qt will issue a warning at run-time. Similarly, Qt will give a warning if
parameter names are included in the signal or slot signatures.

20 2. Creating Dialogs

Qt’s Meta-Object System ‘

One of Qt’s major achievements has been the extension of C++ with a
mechanism for creating independent software components that can be
bound together without any component knowing anything about the other
components it is connected to.

The mechanism is called the meta-object system, and it provides two key
services: signals and slots, and introspection. The introspection functional-
ity is necessary for implementing signals and slots, and allows application
programmers to obtain “meta-information” about Qobject subclasses at run-
time, including the list of signals and slots supported by the object and its
class name. The mechanism also supports properties (for Q¢ Designer) and
text translation (for internationalization).

Standard C++ doesn’t provide support for the dynamic meta-information
needed by Qt’s meta-object system. Qt solves this problem by providing
a separate tool, moc, that parses Q_0BJECT class definitions and makes the
information available through C++ functions. Since moc implements all
its functionality using pure C++, Qt’s meta-object system works with any
C++ compiler.

The mechanism works as follows:

¢ The ¢_0BJECT macro declares some introspection functions that must be
implemented in every Qobject subclass:metaObject (), className(), tr(),
and a few more.

* Qt’s moc tool generates implementations for the functions declared by
0_O0BJECT and for all the signals.

® 00bject member functions such as connect () and disconnect () use the
introspection functions to do their work.

All of this is handled automatically by gmake, moc, and Qobject, so you rarely
need to think about it. But if you are curious, you can look at the C++
source files generated by moc to see how the implementation works.

So far, we have only used signals and slots with widgets. But the mechanism
itself is implemented in QoObject, and isn’t limited to GUI programming. The
mechanism can be used by any Qobject subclass:

class Employee : public QObject
{

Q_OBJECT
public:

Employee() { mySalary = 0; }

int salary() const { return mySalary; }

public slots:
void setSalary(int newSalary);

signals:

Signals and Slots in Depth 21

void salaryChanged(int newSalary);

private:
int mySalary;

}i

void Employee::setSalary(int newSalary)
{
if (newSalary != mySalary) {
mySalary = newSalary;
emit salaryChanged(mySalary) ;

}

Notice how the setsalary() slot is implemented. We only emit the salary-
Changed () signal if newSalary != mySalary. This ensures that cyclic connections
don’t lead to infinite loops.

Rapid Dialog Design

Qt is designed to be pleasant and intuitive to hand-code, and it is perfectly
possible to develop Qt applications purely by writing C++ source code. @t
Designer expands the options available to programmers, allowing them to
combine visually designed forms with their source code.

In this section, we will use @t Designer to create the Go-to-Cell dialog shown
in Figure 2.4. Whether we do it in code or in Q¢ Designer, creating a dialog
always involves the same fundamental steps:

¢ (Create and initialize the child widgets.
¢ Put the child widgets in layouts.

* Set the tab order.

¢ Establish signal-slot connections.

¢ Implement the dialog’s custom slots.

Figure 2.4. Go-to-Cell dialog

To launch Q¢ Designer, click Qt 3.2.x|Qt Designer in the Start menu on Windows,
type designer on the command line on Unix, or double-click designer in the
Mac OS X Finder. When @t Designer starts, it will pop up a list of templates.
Click the “Dialog” template, then click OK. You should now have a window
called “Form1”.

22

2. Creating Dialogs

Fle Edit Projest Search o

Buttons

Cantainers

Wiews

Datobase

Input

Display

Custom Widgets

& B
ID S @ o2 A] 8 E Bl &mE 8w Z B -
| |
Commen Widgets ot HEH Propertes | Sianal Handers |
or] PushButtan o= Jrvale |
@ FasioButton e s ﬁ'ﬂm
[checkbox sizs Policy FraferrediFreferts
minium Size 0.0]
ButtonGroup maKimumSize 32767, 32767]
= 0,0
L'*‘Bﬂ* e Size 0,0]
palette Foregrou.
LingEdit
paletteBackgrou...
53] SpinBos paletteBackgrou
palette []
@ TextEdit background Origin |Widget Origin
font helvetica-8
] comoax coraor o
caption Form1
T TextLabel s
Spacer feonText

mouseTracking | False
fotusPalicy HoFoeus
acteptDrops_|Fabae
size GripEnabled | False
toolTin
whatsThis

5

[Feadly
=

Figure 2.5. Q¢ Designer with an empty form

The first step is to create the child widgets and place them on the form. Create
one text label, one line editor, one (horizontal) spacer, and two push buttons.
For each item, click its name or icon in the “toolbox” at the left of Q¢ Designer’s
main window and then click the form roughly where the item should go. Now
drag the bottom of the form up to make it shorter. This should produce a form
that is similar to Figure 2.6. Don’t spend too much time positioning the items
on the form; Qt’s layout managers will lay them out precisely later on.

The spacer item is shown in Q¢ Designer as a blue spring. It is invisible in the

final form.
= Formi
i | .
|t:':'::':'h:'miﬂ{ pushButtonl push Buttans |

Set each widget’s

Figure 2.6. The form with some widgets

properties using the property editor on the right of Q¢

Designer’s main window:

1. Click the text label. Set its name property to “label” and its text property
to “&Cell Location:”.

2. Click the line editor. Set its name property to “lineEdit”.

3. Click the spacer. Make sure that the spacer’s orientation property is set
to “Horizontal”.

Rapid Dialog Design 23

4. Click the first button. Set its name property to “okButton”, its enabled
property to “False”, its default property to “True”, and its text property
to “OK”.

5. Click the second button. Set its name property to “cancelButton” and its
text property to “Cancel”.

6. Click the background of the form to select the form itself. Set its name
property to “GoToCellDialog” and its caption property to “Go to Cell”.

All the widgets look fine now, except the text label, which shows &Cell Location.
Click Tools|Set Buddy. Click the label and drag the rubber band to the line
editor, then release. The label should now show Cell Location and have the
line editor as its buddy. You can verify this by checking that the label’s buddy
property is set to “lineEdit”.

m Go to Cell

Figure 2.7. The form with properties set

The next step is to lay out the widgets on the form:
1. Click the Cell Location label and press Shift as you click the line editor next
to it so that they are both selected. Click Layout|Lay Out Horizontally.

2. Click the spacer, then hold Shift as you click the form’s OK and Cancel
buttons. Click Layout|Lay Out Horizontally.

3. Click the background of the form to deselect any selected items, then click
Layout|Lay Out Vertically.

4. Click Layout|Adjust Size to resize the form to its optimal size.

The red lines that appear on the form show the layouts that have been created.
They never appear when the form is run.

m Go to Cell

Cell Location:

|mﬁﬁfﬁﬁ4 Cancel ||

Figure 2.8. The form with the layouts

24 2. Creating Dialogs

Now click Tools|Tab Order. A number in a blue circle will appear next to every
widget that can accept focus. Click each widget in turn in the order you want
them to accept focus, then press Esc.

m Go to Cell

Cell Location: lo _
lrmﬁﬁﬂm‘lo Io Cancel H

Figure 2.9. Setting the form’s tab order

Now that the form has been designed, we are ready to make it functional by
setting up some signal-slot connections and by implementing some custom
slots. Click Edit|Connections to invoke the connection editor.

Sender Signal Receiver Slot
' 3 GoToCellDialog (3
. N N Lelete
%" |cancelButton clicked() GoToCellDialog reject()

ew |
" |lineEdit textChanged{const 05 GoToCellDialog enableOkButtond) Edit Slots... |
L

¥ Orily display slots Mew Function | Delete Function

Function Fropetties

Function: Ienable Ok Buttan{) Feturn type: Ivoid

Specifier: |virtua] ;I Arcess: |private ;I Type: |3I01 ;I

Help | oK LCancel

Figure 2.11. Q¢ Designer’s slot editor

We need to establish three connections. To create a connection, click New and
set the Sender, Signal, Receiver, and Slot fields using the drop-down comboboxes.

Rapid Dialog Design 25

Connect the okButton’s clicked() signal to the GoToCellDialog’s accept() slot.
Connect the cancelButton’s clicked() signal to the GoToCellDialog’s reject()
slot. Click Edit Slots to invoke @t Designer’s slot editor (shown in Figure 2.11),
and create an enableOkButton() private slot. Finally, connect the 1inekdit’s
textChanged(const QString &) signal to the GoToCellDialog’s new enableOkBut-
ton() slot.

To preview the dialog, click the Preview|Preview Form menu option. Check the
tab order by pressing Tab repeatedly. Press Alt+C to move the focus to the line
editor. Click Cancel to close the dialog.

Save the dialog as gotocelldialog.ui in a directory called gotocell, and create
a main.cpp file in the same directory using a plain text editor:

#include <gapplication.h>
#include "gotocelldialog.h"

int main(int argc, char *argvl[])
{
QApplication app(argc, argv);
GoToCellDialog *dialog = new GoToCellDialog;
app.setMainWidget (dialog) ;
dialog->show() ;
return app.exec();

}

Now run gmake to create a .pro file and a makefile (gmake -project; gmake
gotocell.pro). The gmake tool is smart enough to detect the user interface file
gotocelldialog.ui and to generate the appropriate makefile rules to create
gotocelldialog.h and gotocelldialog.cpp. The .ui file is converted to C++ by
uic, Qt’s user interface compiler.

One of the beauties of using @t Designer is that it allows programmers great
freedom to modify their form designs without disturbing their source code.
When you develop a form purely by writing C++ code, changes to the design
can be quite time-consuming. With Q¢ Designer, no time is lost since uic
simply regenerates the source code for any forms that have changed.

If you run the program now, the dialog will work, but it doesn’t function
exactly as we want:

* The OK button is always disabled.

* The line editor accepts any text, instead of only accepting valid cell lo-
cations.

We must write some code to solve these problems.

Double-click the background of the form to invoke @t Designer’s code editor.
In the editor window, enter the following code:

#include <gvalidator.h>

void GoToCellDialog::init()

26 2. Creating Dialogs

QRegExp regExp("[A-Za-z] [1-9] [0-9] {0,2}");
lineEdit->setValidator (new QRegExpValidator(regExp, this));
}

void GoToCellDialog::enableOkButton()
{

okButton->setEnabled(lineEdit->hasAcceptableInput());
}

The init () function is automatically called at the end of the form’s constructor
(generated by uic). We set up a validator to restrict the range of the input. Qt
provides three built-in validator classes: QIntvalidator, QDoublevalidator, and
QRegExpValidator. Here we use a QRegExpValidator with the regular expression
“[A-Za-z][1-9][0-9]{0,2}”, which means: Allow one upper- or lower-case letter,
followed by one digit in the range 1 to 9, followed by up to two digits each in
the range 0 to 9. (For an introduction to regular expressions, see the QregExp
class documentation.)

By passing this to the QrRegExpvalidator constructor, we make it a child of
the CoToCellDialog object. By doing so, we don’t have to worry about deleting
the QrRegExpvalidator later; it will be deleted automatically when its parent
is deleted.

The enableOkButton() slot enables or disables the OK button, according to
whether the line edit contains a valid cell location. QLineEdit::hasAcceptable-
Input () uses the validator we set in the init () function.

B GoToCellDizlog

#include <gvalidator.h> I

void GoTaCellDialog:iinit()

{
ARezExn regExp (" [A-Za-z 1[1-21[0-91{0,21");
lineEdit-rsetValidator (new BRezExpValidator{regExp, this));

}

void GoToCellDialog: :enablelkButton()

okButton->setEnabled(lineEdit-hasfcceptableInput () 3;
}

y 5

Ling: 13 Col: 1

Figure 2.12. Qt Designer’s code editor

After typing the code, save the dialog again. This will effectively save two
files: the user interface file gotocelldialog.ui, and the C++ source file goto-
celldialog.ui.h. Make the application once more and run it again. Type “A12”
in the line edit, and notice that the OK button becomes enabled. Try typing
some random text to see how the validator does its job. Click Cancel to close
the dialog.

Rapid Dialog Design 27

In this example, we edited the dialog in Q¢ Designer, then we added some code
using Qt Designer’s code editor. The dialog’s user interface is saved in a .ui
file (an XML-based file format), while the code is saved in a .ui.h file (a C++
source file). This split is very convenient for developers who want to edit the
.ui.h file in their favorite text editor.

An alternative to the .ui.h approach is to create a .ui file with @¢ Designer
as usual, then create an additional class that inherits the uic-generated
class and adds the extra functionality there. For example, for the Go-to-Cell
dialog, this would mean creating a GoToCellDialogImpl class that inherits
GoToCellDialog and that implements what’s missing. It is straightforward to
convert the .ui.h code to use this approach. The result is this header file:

#ifndef GOTOCELLDIALOGIMPL_H
#define GOTOCELLDIALOGIMPL_H

#include "gotocelldialog.h"

class GoToCellDialogImpl : public GoToCellDialog
{
Q_OBJECT
public:
GoToCellDialogImpl (QWidget *parent = 0, const char *name = 0);

private slots:
void enableOkButton();
}i

#endif
And this source file:

#include <glineedit.h>
#include <gpushbutton.h>
#include <gvalidator.h>

#include "gotocelldialogimpl.h"

GoToCellDialogImpl::GoToCellDialogImpl (QWidget *parent,
const char *name)
: GoToCellDialog(parent, name)

QRegExp regExp("[A-Za-z] [1-9][0-9]{0,2}");
lineEdit->setValidator (new QRegExpValidator(regExp, this));
}

void GoToCellDialogImpl::enableOkButton()
{

okButton->setEnabled(lineEdit->hasAcceptablelInput());
}

Developers who prefer the subclassing approach would probably call the base
class GoToCellDialogBase and the derived class GoToCellDialog, keeping the
better name for the class that contains all the functionality.

28 2. Creating Dialogs

The uic tool provides command-line options to simplify the creation of sub-
classes based on forms created with @t Designer. Use -subdecl to generate a
skeleton header file, and use -subimpl to generate the matching implementa-
tion file.

In this book, we use the .ui.h approach since thisis the most common practice,
and since it is easy to convert .ui.h files into subclasses. You might want to
read the “Designer Approach” chapter in @t Designer’s manual for a technical
appreciation of the differences between subclassing and using . ui.h files. An-
other chapter in the manual, “Creating Dialogs”, demonstrates how to use ¢
Designer’s Members tab to declare member variables in uic-generated classes.

Shape-Changing Dialogs

We have seen how to create dialogs that always show the same widgets when-
ever they are used. In some cases, it is desirable to provide dialogs that can
change shape. The two most common kinds of shape-changing dialogs are ex-
tension dialogs and multi-page dialogs. Both types of dialog can be implement-
ed in Qt, either purely in code or using Q¢ Designer.

Extension dialogs usually present a simple appearance but have a toggle but-
ton that allows the user to switch between the dialog’s simple and extended
appearances. Extension dialogs are commonly used for applications that are
trying to cater for both casual and power users, hiding the advanced options
unless the user explicitly asks to see them. In this section, we will use ¢ De-
signer to create the extension dialog shown in Figure 2.13.

iR S S (z][=][x] i S R (2][=]lx]
Frimary Key ——————— — Primary Key —————— oK

Colurn: Im vl Colurn: Im vl
Cancel | Cancel
Orcler; IAscending vI Orcler; IAscending vI

More | More

L i — Seconcary Key

Column: INone vl
» Ordler: I.&scending vI
— Tertiary Key

Colurnn: INone vl
Orcer: IAscending VI

ik

Figure 2.13. Sort dialog with simple and extended appearances

The dialog is a Sort dialog in a spreadsheet application, where the user can
select one or several columns to sort on. The dialog’s simple appearance allows
the user to enter a single sort key, and its extended appearance provides for

Shape-Changing Dialogs 29

two extra sort keys. A More button lets the user switch between the simple and
extended appearances.

We will create the widget with its extended appearance in Q¢ Designer, and
hide the secondary and tertiary keys at run-time as needed. The widget looks
complicated, but it’s fairly easy to do in Q¢ Designer. The trick is to do the
primary key part first, then copy and paste it twice to obtain the secondary
and tertiary keys:

1. Create a group box, two text labels, two comboboxes, and one horizontal
spacer.

2. Drag the bottom right corner of the group box to make it larger.

3. Move the other widgets into the group box and position them approxi-
mately as shown in Figure 2.14 (a).

4. Drag the right edge of the second combobox to make it about twice as wide
as the first combobox.

5. Set the group box’s title property to “&Primary Key”, the first label’s text
property to “Column:”, and the second label’s text property to “Order:”.

6. Double-click the first combobox to pop up @t Designer’s list box editor, and
create one item with the text “None”.

7. Double-click the second combobox and create an “Ascending” item and a
“Descending” item.

8. Click the group box, then click Layout|Lay Out in a Grid. This will produce the
layout shown in Figure 2.14 (b).

= Form1 m Form1

Primary key ——— 0 L Primary Mey —

Colurnr: | Mone VI I»'J’J’J’J’J'JW”J’”{ Lo | column: INone vl Pﬂmﬁﬁfq R
Order: | scending vl Lo .| Orcer: IAscending]' L
(a) Without layout (b) With layout

Figure 2.14. Laying out the group box’s children in a grid

If a layout doesn’t turn out quite right or if you make a mistake, you can
always click Edit|Undo, then roughly reposition the widgets being laid out and
try again.

We will now add the Secondary Key and Tertiary Key group boxes:

1. Make the dialog window tall enough for the extra parts. Select the group
box, click Edit|Copy, then click Edit|Paste twice to obtain two additional
group boxes. Drag the two new group boxes to the approximate positions
that they should occupy. Change their title property to “&Secondary
Key” and “&Tertiary Key”.

30 2. Creating Dialogs

2. Create the OK, Cancel, and More buttons.

3. Set the OK button’s default property to “True” and the More button’s
toggle property to “True”.

4. Create two vertical spacers.

5. Arrange the OK, Cancel, and More buttons vertically, with a vertical spacer
between the Cancel and More buttons. Then select all four items and click
Layout|Lay Out Vertically.

6. Place the second vertical spacer between the primary key group box and
the secondary key group box.

7. Set the two vertical spacer items’ sizeHint property to (20, 10).
8. Arrange the widgets in the grid-like pattern shown in Figure 2.15 (a).
9. Click Layout|Lay Out in a Grid. The form should now match Figure 2.15 (b).

= Formi !E = Formi !E

Erimary Key |procooccn: e R : — .

. |__| N a4 I . .

Calurmn: | More ¥ |rrrrrrfrfrm1 | - Colurnh: INone vI |1rrrfrfrrrrrm1 5 .

Oreler: IAscending VI | Caricel | 1 Order: Iﬁscending = |- Cancel |

| [. = .

—_— Hore |Z
Seconclary key — | - - - - - -

B © o Secondary Key — ¢ o0

Colurnn: INone vl AR I A T | L

P 4 B i Colurnn: INone vI Ilf:'ffffffff:’ffzi oo

Order: IAscending vi P S

blp e ecoooooo g Orcler: IAscending vl ----------

[Tty ey ——————1f oo [Tertry ey R

‘| Colurnr: INone vl |urrrrrwm1 N i Column: INone vI |1rrrfrfrrrrrm1 oo

|| Order: IAscending 'l 1 i Orcler: I.i\.scending Vl ----------

(a) Without layout (b) With layout

Figure 2.15. Laying out the form’s children in a grid

The resulting grid layout has two columns and four rows, giving a total of
eight cells. The Primary Key group box, the leftmost vertical spacer item, the
Secondary Key group box, and the Tertiary Key group box each occupy a single cell.
The vertical layout that contains the OK, Cancel, and More buttons occupies two
cells. Thatleaves two empty cellsin the bottom-right of the dialog. If thisisn’t
what you have, undo the layout, reposition the widgets, and try again.

Change the form’s resizeMode property from “Auto” to “Fixed”, making the dia-
log non-resizable by the user. The layout then takes over the responsibility for
resizing, and resizes the dialog automatically when child widgets are shown or
hidden, ensuring that the dialog is always displayed at its optimal size.

Shape-Changing Dialogs 31

Rename the form “SortDialog” and change its caption to “Sort”. Set the names
of the child widgets to those shown in Figure 2.16.

primaryGroupBox ———————»y- Erimary Key ﬁ - p okButton

i Colurnn: | Mone | e .
primaryColumnCombo : | | i‘- cancelButton
primaryOrderCombo —ﬂJ Ascending] :

moreButton

secondaryGroupBox —'»’— Seconcary ey ————— 00000000
secondaryColumnCombo ——{—Column: | | cotmng [Heone =] fsssc] |2 000D

secondaryOrderCombo ——%J Ascending 7] [T

tertiaryGroupBox ———————f~ Tt ey —————.

tertiaryColumnCombo - | coumng [rone =] o] |
tertiaryOrderCombo —ﬂ»l ssvendng = |11

Figure 2.16. Naming the form’s widgets

Finally, set up the connections:
1. Connect the okButton’s clicked() signal to the form’s accept () slot.
2. Connect the cancelButton’s clicked() signal to the form’s reject () slot.

3. Connect the moreButton’s toggled(bool) signal to the secondaryGroupBox’s
setShown (bool) slot.

4. Connect the moreButton’s toggled(bool) signal to the tertiaryGroupBox’s
setShown (bool) slot.

Double-click the form to launch Q¢ Designer’s C++ code editor and type in the
following code:

1 void SortDialog::init()

2 {

3 secondaryGroupBox->hide() ;
4 tertiaryGroupBox->hide() ;
5 setColumnRange('A’, 'Z');
6 }

7 void SortDialog::setColumnRange(QChar first, QChar last)

8 {

9 primaryColumnCombo->clear() ;

10 secondaryColumnCombo->clear () ;

11 tertiaryColumnCombo->clear() ;

12 secondaryColumnCombo->insertItem(tr ("None")) ;
13 tertiaryColumnCombo->insertItem(tr ("None"));
14 primaryColumnCombo->setMinimumSize (

15 secondaryColumnCombo->sizeHint ()) ;

32 2. Creating Dialogs

16 QChar ch = first;

17 while (ch <= last) {

18 primaryColumnCombo->insertItem(ch);
19 secondaryColumnCombo->insertItem(ch) ;
20 tertiaryColumnCombo->insertItem(ch);
21 ch = ch.unicode() + 1;

22 }

23 }

The init () function hides the secondary and tertiary key parts of the dialog.

The setColumnRange() slot initializes the contents of the comboboxes based
on the selected columns in the spreadsheet. We insert a “None” item in the
comboboxes for the (optional) secondary and tertiary keys. Although we have
not created this slot using Q¢ Designer’s slot editor, ¢ Designer will detect
that we have created a new slot in code, and uic will automatically generate
the correct function declaration in the SortDialog class definition.

Lines 14 and 15 present a subtle layout idiom. The Qwidget::sizeHint () func-
tion returns a widget’s “ideal” size, which the layout system tries to honor. This
explains why different kinds of widgets, or similar widgets with different con-
tents, may be assigned different sizes by the layout system. For comboboxes,
this meansthat the secondary and tertiary comboboxes, which contain “None”,
end up larger than the primary combobox, which contains only single-letter
entries. To avoid this inconsistency, we set the primary combobox’s minimum
size to the secondary combobox’s ideal size.

Here is a main() test function that sets the range to include columns ‘C’ to ‘F’
and then shows the dialog:

#include <gapplication.h>
#include "sortdialog.h"

int main(int argc, char *argv[])

{
QApplication app(argc, argv);
SortDialog *dialog = new SortDialog;
app.setMainWidget (dialog) ;
dialog->setColumnRange(’C’, 'F’);
dialog->show() ;
return app.exec();

}

That completes the extension dialog. Asthe example illustrates, an extension
dialog isn’t much more difficult to design than a plain dialog: All we need
is a toggle button, a few extra signal-slot connections, and a non-resizable
layout.

The other common type of shape-changing dialogs, multi-page dialogs, are
even easier to create in Qt, either in code or using @t Designer. These dialogs
can be built in many different ways.

Shape-Changing Dialogs 33

* A QTabWidget can be used in its own right. It provides a tab bar along the
top that controls a built-in QwidgetStack.

* A QListBox and a QWidgetStack can be used together, with the QListBox’s
current item determining which page the QwidgetStack shows.

e A QListView or a QIconView can be used with a gwidgetStack in a similar
way to a QListBox.

The gwidgetStack class is covered in Chapter 6 (Layout Management).

Dynamic Dialogs

Dynamic dialogs are dialogs that are created from a Q¢ Designer . ui file at run-
time. Dynamic dialogs are not converted into C++ code by uic.Instead, the .ui
file is loaded at run-time using the QwWidgetFactory class, in the following way:

QDialog *sortDialog = (QDialog *)
QWidgetFactory::create("sortdialog.ui");

We can access the form’s child widgets using Qobject::child():

QComboBox *primaryColumnCombo = (QComboBox *)
sortDialog->child("primaryColumnCombo", "QComboBox") ;

The child() function returns a null pointer if the dialog has no child that
matches the given name and type.

The gwidgetFactory classislocated in a separate library. To use QWidgetFactory
from a Qt application, we must add this line to the application’s .pro file:

LIBS += -1qui
This syntax works on all platforms, even though it has a definite Unix flavor.

Dynamic dialogs make it possible to change the layout of the form without
recompiling the application. For a complete example of an application that
uses a dynamic dialog, see the “Subclassing and Dynamic Dialogs” chapter in
the Q¢ Designer manual.

Built-in Widget and Dialog Classes

Qt provides a complete set of built-in widgets and common dialogs that cater
for most situations. In this section, we present screenshots of almost all of
them. A few specialized widgets are deferred until later: Main window wid-
gets such as QMenuBar, QPopupMenu, and QToolBar are covered in Chapter 3, and
database widgets such as QDataview and QDataTable are covered in Chapter 12.
Most of the built-in widgets and dialogs are used in the examples presented
in thisbook. In the screenshots below, the widgets are shown using the classic
Windows style.

34 2. Creating Dialogs

Ok [¥ Match case { dscending
Cancel [T Search backward {* Descending
QPushButton QCheckBox QRadioButton

Figure 2.17. Qt’s button widgets

Qt provides three kinds of “buttons”: QpushButton, QCheckBox, and QRadioButton.
QpPushButton is most commonly used to initiate an action when it is clicked, but
it can also behave like a toggle button (click to press down, click to release).
QradioButtons are usually used inside a QButtonGroup and are mutually exclu-
sive within their group, whereas QCheckBox can be used for independent on/off
options.

—Indent
¥ Default indent style Firict
{ Mo automatic indent Close
{~ Auto-indent
" Smart-indent Help
QGroupBox QFrame
Sound
Froperties I Aclyanicedd I E} Alarm
Owher: I.-*-dministratu:ur ;I ﬁ Bell
¥ Read-only @ Tea Time
Keyboard
™ Hidden Y
Mo ze
rultirnedia
QTabWidget QToolBox

Figure 2.18. Qt’s container widgets

Qt’s container widgets are widgets that contain other widgets. QFrame can also
be used on its own to simply to draw lines and is inherited by many other
widget classes, notably QLabel and QLineEdit. QButtonGroup is not shown; it is
visually identical to QGroupBox.

QTabWidget and QToolBox are multi-page widgets. Each page is a child widget,
and the pages are numbered from 0.

Built-in Widget and Dialog Classes 35

% Lights 4th Foor Location State |
R Lights Sth Aoor = Morth Wing
T Trash L 4th Foor 0K
F Lights Basemnent 2% 5th Aoor Ok T
ﬁ Trash
—‘ﬂ Basement Mot OK ll

QListBox QListView
@ 1 2 .
= 1 104323 250
Addresses Calibrator 2 1037.39 175
m 3 97077 .
4

1003 .32 -
Settincgs
d ELlock Ny | _.,|_I

QIconView QTable

Figure 2.19. Qt’s item view widgets

The item views are optimized for handling large amounts of data, and often
use scroll bars. The scroll bar mechanism is implemented in QScrollview, a
base class for item views and other kinds of views.

Waming: Al unsaved |EE |
informmation will be lost! I i %

QLabel QLCDNumber QProgressBar

Figure 2.20. Qt’s display widgets

Qt provides a few widgets that are used purely for displaying information.
QLabel is the most important of these, and it can be used for showing rich text
(using a simple HTML-like syntax) and images.

QTextBrowser (not shown) is a read-only QTextEdit subclass that has basic
HTML support including lists, tables, images, and hypertext links; Q¢ Assis-
tant uses QTextBrowser to present documentation to the user.

36 2. Creating Dialogs

[t#ialcta | Hetvetica R EED 4

QLineEdit QComboBox QSpinBox

[osnznarr & Joenenstz H[11sess H 0 [1159s3 A

QDateEdit QDateTimeEdit QTimeEdit

i m B 2

QSlider QScrollBar

Being a retired professor is alot like being an

ordinary professor, except that you don't
have to write research proposals, administer

grants, or sit in Eeeds meetings . Also, you
don't get paid.

QTextEdit QDial
Figure 2.21. Qt’s input widgets
Qt provides many widgets for data entry. QLineEdit can restrictitsinput using

an input mask or a validator. QTextEdit is a QScrollview subclass capable of
editing large amounts of text.

Basic colars Font Fant style Size

|&vant Garde Gothic Book Obligue 26
BT - = P—
- - 2
EEEEE T Annstone 300k Obiiue 15
- - - - - ,_ l_ l_ Arnoldboscklin e 18

Ayvant Garde Gothic 20
EEEEET T At 2
EEEEEC T 2 s

Btstream Chorter = F |

’

= e |57— I strikeout o
,!,!::,'I#,'ZE Pl AaBbAG77
| o e IT [<
oK I Caneel | Addf to Custom Colors | Close
QColorDialog QFontDialog

Figure 2.22. Qt’s color dialog and font dialog

Qt provides the standard set of common dialogs that make it easy to ask the
user to select a color, font, or file, or to print a document.

Built-in Widget and Dialog Classes 37

—Print destination

Look e [{23 Mome/etrar
& Frint to printer

igs Cprop Cuin [astivess pof

Cgeex odoe3 [valgring-1.0.4 [aquarium html - i

Claen Cloondsatver Clwrapper [sssistant.ang et Tinknown Location

Chorioge Clogoatest Clami L1 basbuttons.png yace Unknown Location

(icons [om05test Clamiz [badtlayout prg P

(ingenting Cgt-145 Cemiz [badiogin png

(lout [atver Cyyindent [bar cp I —I
Cliupiate1 Cren (1 bez

Cmetakay Clrvssee - B ~Frinter settings ———~Faper format

CImos [l spellecit [mPmi1casPn [bz cop € Print in color if available [Partrait =]
Cnoext [splash [Minutes_020701 doc [carct.png & Print in grayscale

Enonal Csyms [Mon-Fareil ps [calors i

Clolcoio3 Ctemn [muotes (1 calora.em

Clpng [Mest-ggo3] 952002-11-08d0c || cambobox.png —Options

Clpostgresgir.2.1 L timeline [5520021222000 [combohosxpm & Frintal & Print first page first

Caee Clypedet [ss2002-1222htm] course pof (of € Print last page st

primes Cui-fle-format [Using @t [cplusplusstandard pett el

| | 3: Number of copies: [1 =

File peme: [Ha260.xt
e tope: [A1 Fies ¢ =l Caneel Cancel

QFileDialog QPrintDialog

Figure 2.23. Qt’s file dialog and print dialog

On Windows and Mac OS X, Qt uses the native dialogs rather than its own
common dialogs when possible.

Loading model3o dat...

Enter your name:

[Estsger vk Diftra [TTTTTTTTIT] 45%

QInputDialog QProgressDialog
[=]Dl[] o [l[=]Bi[=]
i‘_\ If you're backing up to a floppy, have a blank, i Exror B50:
etz Gl TR 2l el \l) The remote access server is not responding.

Alternate between two disks instead of always
backing up to the same disk.

Are you ready to continue with Backup? ¥ Show this message again
o Bo
L Il L Il
QMessageBox QErrorMessage

Figure 2.24. Qt’s feedback dialogs

Qt provides a versatile message box and an error dialog that remembers
which messagesit has shown. The progress of time-consuming operations can
be indicated using QProgressDialog or using the QprogressBar shown earlier.
QInputDialog is very convenient when a single line of text or a single number
is required from the user.

Finally, qwizard provides a framework for creating wizards. Q¢ Designer
provides a “Wizard” template for creating wizards visually.

38 2. Creating Dialogs

Eefore starting thiz wizard, be sure the following steps
hawe been completed:

* |nstallation of the Operating System
* |nstallation of the Application Server
* Filling out the Configuration Yorksheets

1 If any of the above steps still need to be completed,
. click Cancel to close this wizard and restart it when
you have completed all the requirements.

If all the requirernents have been met, click Next to
continue.

| HMext = I

Figure 2.25. Qt’s QWizard dialog

A lot of ready-to-use functionality is provided by the built-in widgets and
common dialogs. More specialized requirements can often be satisfied by
connecting signals to slots and implementing custom behavior in the slots.

In some situations, it may be desirable to create a custom widget from scratch.
Qt makes this straightforward, and custom widgets can access all the same
platform-independent drawing functionality as Qt’s built-in widgets. Custom
widgets can even be integrated with @¢ Designer so that they can be used
in the same way as Qt’s built-in widgets. Chapter 5 explains how to create
custom widgets.

* Subclassing @QMainWindow

* Creating Menus and Toolbars
* Implementing the File Menu

e Setting Up the Status Bar

e Using Dialogs

* Storing Settings

* Multiple Documents

e Splash Screens

Creating Main Windows

This chapter will teach you how to create main windows using Qt. By the end,
you will be able to build an application’s entire user interface, complete with
menus, toolbars, status bar, and as many dialogs as the application requires.

opulation.s T L [=][Ol[x]
File Edit Tools Options Help
IREEIEEREEE
& |B B D E i]
1 “ear ‘Warld Population
2 |eoooe.c. S millicn
3 |soanD. 200 million
4 |16504.D. 500 million
5 |18s0 4D, 1 hillion
6 [19454D. Er
7 |1980 a0, 4.4 billon p—
3 ksg Cut Cirl+s
g LCopy Ctri+C
10 [T paste ctrsv
11
12 -
K1 _>IJ
[[B7 [4 .4 bilion [
L L

Figure 3.1. Spreadsheet application

An application’s main window provides the framework upon which the appli-
cation’s user interface is built. The main window for the Spreadsheet applica-
tion shown in Figure 3.1 will form the basis of this chapter. The Spreadsheet
application makes use of the Find, Go-to-Cell, and Sort dialogs that we created
in Chapter 2.

39

40 3. Creating Main Windows

Behind most GUI applications lies a body of code that provides the underlying
functionality—for example, code to read and write files or to process the data
presented in the user interface. In Chapter 4, we will see how to implement
such functionality, again using the Spreadsheet application as our example.

Subclassing QMainWindow

An application’s main window is created by subclassing QMainWindow. Many
of the techniques we saw in Chapter 2 for creating dialogs are also relevant
for creating main windows, since both gdialog and QMainWindow inherit from
QWidget.

Main windows can be created using @t Designer,but in this chapter we will use
code to demonstrate how it’s done. If you prefer the more visual approach, see
the “Creating a Main Window Application” chapter in @t Designer’s manual.

The source code for the Spreadsheet application’s main window is spread
across mainwindow.h and mainwindow. cpp. Let’s start with the header file:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <gmainwindow.h>
#include <gstringlist.h>

class QAction;
class QLabel;
class FindDialog;
class Spreadsheet;

class MainWindow : public QMainWindow

{
Q_OBJECT
public:
MainWindow(QWidget *parent = 0, const char *name = 0);

protected:
void closeEvent (QCloseEvent *event);
void contextMenuEvent (QContextMenuEvent *event);

We define the class MainWindow as a subclass of QMainwindow. It contains the g_
OBJECT macro because it provides its own signals and slots.

The closeEvent () function is a virtual function in Qwidget that is automatically
called when the user closes the window. It is reimplemented in MainWindow
so that we can ask the user the standard question “Do you want to save your
changes?” and to save user preferences to disk.

Similarly, the contextMenuEvent () function is called when the user right-clicks
a widget or presses a platform-specific Menu key. It is reimplemented in
MainWindow to pop up a context menu.

private slots:
void newFile();

Subclassing @MainWindow 41

void :
bool
bool
void
void
void
void

open ()
save();
saveAs () ;
find();
goToCell();
sort();
about () ;

Some menu options, like File|New and Help|About, are implemented as private
slots in MainWindow. Most slots have void as their return value, but save () and
saveds () return a bool. The return value is ignored when a slot is executed in
response to a signal, but when we call a slot as a function the return value is
available to us just as it is when we call any ordinary C++ function.

updateCellIndicators();
spreadsheetModified() ;
openRecentFile(int param);

void
void
void

private:
void
void
void
void
void
void
bool
void
void

createActions() ;

createMenus () ;

createToolBars() ;

createStatusBar();

readSettings();

writeSettings();

maybeSave () ;

loadFile(const QString &fileName);
saveFile(const QString &fileName);

void setCurrentFile(const QString &fileName);
void updateRecentFilelItems();

QString strippedName (const QString &fullFileName) ;

The main window needs some more private slots and several private functions
to support the user interface.

Spreadsheet *spreadsheet;
FindDialog *findDialog;
QLabel *locationLabel;
QLabel *formulalLabel;
QLabel *modLabel;
QStringList recentFiles;
QString curFile;

QString fileFilters;

bool modified;

enum { MaxRecentFiles =5 };
int recentFilelIds[MaxRecentFiles];

QPopupMenu
QPopupMenu
QPopupMenu
QPopupMenu
QPopupMenu
QPopupMenu

*fileMenu;
*editMenu;
*selectSubMenu;
*toolsMenu;
*optionsMenu;
*helpMenu;

QToolBar *fileToolBar;
QToolBar *editToolBar;

42 3. Creating Main Windows

QAction *newAct;
QAction *openAct;
QAction *saveAct;

QAction *aboutAct;
QAction *aboutQtAct;
Vi

#endif

In addition to its private slots and private functions, Mainwindow also has lots
of private variables. All of these will be explained as we use them.

We will now review the implementation:

#include <gaction.h>
#include <gapplication.h>
#include <gcombobox.h>
#include <gfiledialog.h>
#include <glabel.h>
#include <glineedit.h>
#include <gmenubar.h>
#include <gmessagebox.h>
#include <gpopupmenu.h>
#include <gsettings.h>
#include <gstatusbar.h>

#include "cell.h"

#include "finddialog.h"
#include "gotocelldialog.h"
#include "mainwindow.h"
#include "sortdialog.h"
#include "spreadsheet.h"

We include the header files for the Qt classes used in our subclass, and
also some custom header files, notably finddialog.h, gotocelldialog.h, and
sortdialog.h from Chapter 2.

MainWindow: :MainWindow (QWidget *parent, const char *name)
: QMainWindow(parent, name)

{
spreadsheet = new Spreadsheet(this);
setCentralWidget (spreadsheet) ;

createActions();
createMenus () ;
createToolBars () ;
createStatusBar();

readSettings () ;

setCaption(tr("Spreadsheet"));
setIcon(QPixmap::fromMimeSource("icon.png"));

findDialog = 0;
fileFilters = tr("Spreadsheet files (*.sp)");
modified = false;

Subclassing @MainWindow 43

In the constructor, we begin by creating a Spreadsheet widget and setting it
to be the main window’s central widget. The central widget occupies the area
between the toolbars and the status bar. The Spreadsheet class is a QTable
subclass with some spreadsheet capabilities, such as support for spreadsheet
formulas. We will implement it in Chapter 4.

menuBar()

topDock()
< <
S , 8
a centralWidget() o)
© S

bottomDock()
statusBar()

Figure 3.2. QMainWindow’s constituent widgets

Then we call the private functions createActions(), createMenus(), create-
ToolBars (), and createStatusBar() to create the rest of the main window. We
also call the private function readSettings() to read the application’s stored
settings.

We set the window’s icon to icon.png, a PNG file. Qt supports many image
formats, including BMP, GIF,* JPEG, MNG, PNG, PNM, XBM, and XPM.
Calling gwidget::setIcon() sets the icon shown in the top-left corner of the
window. Unfortunately, there is no platform-independent way of setting the
application icon that appears on the desktop. The procedure is explained at
http://doc.trolltech.com/3.2/appicon.html.

GUI applications generally use many images, with some images being used in
several different contexts. Qt has a variety of methods for providing images
to the application. The most common are:

* Storing images in files and loading them at run-time.

¢ Including XPM files in the source code. (This works because XPM files are
also valid C++ files.)

¢ Using Qt’s “image collection” mechanism.

*If you are in a country that recognizes software patents and where Unisys holds a patent on LZW
decompression, Unisys may require you to license the technology to use GIF. Because of this, GIF
support is disabled in Qt by default. We believe that this patent will have expired worldwide by
the end of 2004.

44 3. Creating Main Windows

Here we use the “image collection” approach because it is easier and more
efficient than loading files at run-time, and it works with any supported file
format. The images are stored in the source tree in a subdirectory called
images. By adding the entry

IMAGES = images/icon.png \
images/new.png \
images/open.png \

images/find.png \
images/gotocell.png

to the application’s . pro file, we tell uic to generate a C++ source code file that
contains the data for all the specified images. The data is then compiled into
the application’s executable and can be retrieved using Qpixmap: : fromMime-
source (). This has the advantage that icons and other images cannot get lost;
they are always in the executable.

If you use Q¢ Designer to create your main windows as well as your dialogs,
you can also use it to handle your .pro file and to visually add images to the
image collection.

Creating Menus and Toolbars

Most modern GUT applications provide both menus and toolbars, and typically
they contain more or less the same commands. The menus enable users to
explore the application and learn how to do new things, while the toolbars
provide quick access to frequently used functionality.

Qt simplifies the programming of menus and toolbars through its “action”
concept. An action is an item that can be added to a menu, a toolbar, or both.
Creating menus and toolbars in Qt involves these steps:

¢ Create the actions.
¢ Add the actions to menus.
¢ Add the actions to toolbars.

In the Spreadsheet application, actions are created in createActions():

void MainWindow::createActions()

{
newAct = new QAction(tr("&New"), tr("Ctrl+N"), this);
newAct->setIconSet (QPixmap: : fromMimeSource ("new.png")) ;
newAct->setStatusTip(tr("Create a new spreadsheet file"));
connect (newAct, SIGNAL(activated()), this, SLOT(newFile()));

The New action has a shortcut key (New), an accelerator (Ctrl+N), a parent (the
main window), an icon (new. png), and a status tip. We connect the action’s acti-
vated () signal to the main window’s private newrile() slot, which we’ll imple-
mentin the next section. Without the connection,nothing would happen when
the user chooses the File|[New menu item or clicks the New toolbar button.

Creating Menus and Toolbars 45

The other actions for the File, Edit, and Tools menus are very similar to the New
action.

| Eile: | Edit Tools | Options | Help
) mew — 9% ot — Recalculate F3 [v show cria Shout
. Sort v Auto-recalculate Ahout Gt

@ Open... Crl+0 Copy CHrkC = [v & =
Save Cirl+s Paste Cirls

Save &5, x Delete Del

1 population.sp Select b Fow

2 report-2004.5p @ Fnd... Ctrl+F Calurn

Exit Ciri+a

P> ootocen. Fs ol Cirba

Figure 3.3. The Spreadsheet application’s menus

The Show Grid action in the Options menu is different:

showGridAct = new QAction(tr("&Show Grid"), 0, this);
showGridAct->setToggleAction(true) ;
showGridAct->setOn (spreadsheet->showGrid()) ;
showGridAct->setStatusTip(tr("Show or hide the spreadsheet’s "
||gridn)) ;
connect (showGridAct, SIGNAL(toggled(bool)),
spreadsheet, SLOT(setShowGrid(bool)));

Show Grid is a toggle action. It is rendered with a checkmark in the menu and
implemented as a toggle button in the toolbar. When the action is turned
on, the Spreadsheet component displays a grid. We initialize the action with
the default for the spreadsheet component, so that they are synchronized at
start up. Then we connect the Show Grid action’s toggled(bool) signal to the
Spreadsheet component’s setShowGrid(bool) slot, which it inherits from QTable.
Once this action is added to a menu or toolbar, the user can toggle the grid on
and off.

The Show Grid and Auto-recalculate actions are independent toggle actions.
QAction also provides for mutually exclusive actions through its QactionGroup
subclass.

@ About Git
This program uses O version 3.2.0.

Ot is a C++ toolkit for multiplatform GUI & application development.

Ot provides single-zource portability across M5 Windows, Mac 05 &, Linux,
and all major commer cial Uniz variants.
Gt iz alzo available for embeclded devices.

Gt is a Troltech product. See http: A/, trolltech, comf gt/ for more

information.

Figure 3.4. About Qt

46 3. Creating Main Windows

aboutQtAct = new QAction(tr("About &Qt"), 0, this);

aboutQtAct->setStatusTip(tr("Show the Qt library’s About box"));

connect (aboutQtAct, SIGNAL(activated()), gApp, SLOT(aboutQt()));
}

For About Qt, we use the QApplication object’s aboutQt () slot, accessible through
the q2pp global variable.

Now that we have created the actions, we can move on to building a menu
system through which the actions can be invoked:

void MainWindow: :createMenus ()

{
fileMenu = new QPopupMenu(this);
newAct->addTo (fileMenu) ;
openAct->addTo (fileMenu) ;
saveAct->addTo(fileMenu) ;
saveAsAct->addTo(fileMenu) ;
fileMenu->insertSeparator();
exitAct->addTo(fileMenu) ;

for (int i = 0; 1 < MaxRecentFiles; ++1)
recentFileIds[i] = -1;

In Qt, all menus are instances of QropupMenu. We create the File menu and then
add the New, Open, Save, Save As, and Exit actions to it. We insert a separator
to visually group closely related items together. The for loop takes care of
initializing the recentFilesIds array. We will use recentFilesIds in the next
section when implementing the File menu slots.

editMenu = new QPopupMenu(this);
cutAct->addTo (editMenu) ;
copyAct->addTo (editMenu) ;
pasteAct->addTo (editMenu) ;
deleteAct->addTo (editMenu) ;

selectSubMenu = new QPopupMenu(thig);
selectRowAct->addTo (selectSubMenu) ;
selectColumnAct->addTo(selectSubMenu) ;
selectAllAct->addTo(selectSubMenu) ;
editMenu->insertItem(tr("&Select"), selectSubMenu) ;

editMenu->insertSeparator();
findAct->addTo (editMenu) ;
goToCellAct->addTo (editMenu) ;

The Edit menu includes a submenu. The submenu, like the menu it belongs to,
is a QPopupMenu. We simply create the submenu with this as parent and insert
it into the Edit menu where we want it to appear.

toolsMenu = new QPopupMenu(thig);
recalculateAct->addTo(toolsMenu) ;
sortAct->addTo (toolsMenu) ;

optionsMenu = new QPopupMenu(this);
showGridAct->addTo (optionsMenu) ;

Creating Menus and Toolbars 47

autoRecalcAct->addTo (optionsMenu) ;

helpMenu = new QPopupMenu(this);
aboutAct->addTo (helpMenu) ;
aboutQtAct->addTo (helpMenu) ;

menuBar()->insertItem(tr("&File"), fileMenu);
menuBar () ->insertItem(tr("&Edit"), editMenu);
menuBar () ->insertItem(tr("&Tools"), toolsMenu);
menuBar () ->insertItem(tr("&0Options"), optionsMenu);
menuBar () ->insertSeparator () ;

menuBar () ->insertItem(tr("&Help"), helpMenu) ;

}

We create the Tools, Options, and Help menus in a similar fashion, and we insert
all the menus into the menu bar. The QMainWindow: :menuBar () function returns
a pointer to a QMenuBar. (The menu bar is created the first time menuBar() is
called.) We insert a separator between the Options and Help menu. In Motif
and similar styles, the separator pushes the Help menu to the right; in other
styles, the separator is ignored.

File Edit Toolz Options Help

File Edit Tools Optiohs Help

Figure 3.5. Menu bar in Motif and Windows styles

Creating toolbars is very similar to creating menus:

void MainWindow::createToolBars ()

{
fileToolBar = new QToolBar(tr("File"), this);
newAct->addTo(fileToolBar) ;
openAct->addTo(fileToolBar) ;
saveAct->addTo(fileToolBar) ;

editToolBar = new QToolBar(tr("Edit"), this);
cutAct->addTo(editToolBar) ;
copyAct->addTo(editToolBar) ;
pasteAct->addTo (editToolBar) ;
editToolBar->addSeparator();
findAct->addTo(editToolBar) ;
goToCellAct->addTo(editToolBar) ;

}

We create a File toolbar and an Edit toolbar. Just like a popup menu, a toolbar
can have separators.

DS ||KODB | QP

Figure 3.6. The Spreadsheet application’s toolbars

48 3. Creating Main Windows

Now that we have finished the menus and toolbars, we will add a context
menu to complete the interface:

void MainWindow: :contextMenuEvent (QContextMenuEvent *event)
{
QPopupMenu contextMenu(this);
cutAct->addTo (&contextMenu) ;
copyAct->addTo (&contextMenu) ;
pasteAct->addTo (&contextMenu) ;
contextMenu. exec (event->globalPos());

}

When the user clicks the right-mouse button (or presses the Menu key on some
keyboards), a “context menu” event is sent to the widget. By reimplementing
the Qwidget::contextMenuEvent () function, we can respond to this event and
pop up a context menu at the current mouse pointer position.

\3@ Cut CirlH

Copy Ctrl+C
@Y paste Ctriev

Figure 3.7. The Spreadsheet application’s context menu

Just like signals and slots, events are a fundamental aspect of Qt program-
ming. Events are generated by Qt’s kernel to report mouse clicks, key press-
es, resize requests, and similar occurrences. They can be handled by reimple-
menting virtual functions, as we are doing here.

We have chosen to implement the context menu in Mainwindow because that’s
where we store the actions, but it would also have been possible to implement
it in Spreadsheet. When the user right-clicks the spreadsheet widget, Qt sends
a context menu event to that widget first. If Spreadsheet reimplements con-
textMenuEvent () and handles the event, the event stops there; otherwise, it is
sent to the parent (the Mainwindow). Events are fully explained in Chapter 7.

The context menu event handler differs from all the code seen so far because
it creates a widget (a QPopupMenu) as a variable on the stack. We could just as
easily have used new and delete:

QPopupMenu *contextMenu = new QPopupMenu(this);
cutAct->addTo (contextMenu) ;

copyAct->addTo (contextMenu) ;

pasteAct->addTo (contextMenu) ;

contextMenu->exec (event->globalPos());

delete contextMenu;

Another noteworthy aspect of the code is the exec() call. QPopupMenu: : exec ()
shows the popup menu at a given screen position and waits until the user
chooses an option (or dismisses the popup menu) before it returns. At this
point, the QpopupMenu object has achieved its purpose, so we can destroy it. If

Creating Menus and Toolbars 49

the QropupMenu object is located on the stack, it is destroyed automatically at
the end of the function; otherwise, we must call delete.

We have now completed the user interface part of the menus and toolbars. We
still have not implemented all of the slots or written code to handle the File
menu’s recently opened files. The next two sections will address these issues.

Implementing the File Menu

In this section, we will implement the slots and private functions necessary to
make the File menu options work.

void MainWindow::newFile()
{
if (maybeSave()) {
spreadsheet->clear() ;
setCurrentFile("");

}

The newFile() slot is called when the user clicks the File|]New menu option or
clicks the New toolbar button. The maybeSave() private function asks the user
“Do you want to save your changes?” if there are unsaved changes. It returns
true if the user chooses either Yes or No (saving the document on Yes), and it
returns false if the user chooses Cancel. The setCurrentFile() private function
updates the window’s caption to indicate that an untitled document is being
edited.

- The docurnent has been modified.
\I) Do you want to save your changes?

Wes Mo Cancel |

Figure 3.8. “Do you want to save your changes?”

bool MainWindow::maybeSave()
{
if (modified) {
int ret = QMessageBox::warning(this, tr("Spreadsheet"),
tr ("The document has been modified.\n"
"Do you want to save your changes?"),
QMessageBox::Yes | QMessageBox::Default,
QMessageBox: : No,
QMessageBox: :Cancel | QMessageBox::Escape);

if (ret == QMessageBox::Yes)
return save();
else if (ret == QMessageBox::Cancel)

return false;

50 3. Creating Main Windows

}
return true;

}

In maybeSave (), we display the message box shown in Figure 3.8. The message
box has a Yes, a No, and a Cancel button. The QMessageBox: :Default modifier
makes Yes the default button. The QMessageBox: : Escape modifier makes the
Esc key a synonym for No.

The call to warning () may look a bit complicated at first sight, but the general
syntax is straightforward:

QMessageBox::warning (parent, caption, messageText,
button0, buttonl, ...);

QMessageBox also provides information(), question(), and critical(), which
behave like warning () but display a different icon.

D N AN %
Information Question Warning Critical

Figure 3.9. Message box icons

void MainWindow: :open/()
{
if (maybeSave()) {
QString fileName =
QFileDialog::getOpenFileName(".", fileFilters, this);
if (!fileName.isEmpty())
loadFile(fileName) ;

}

The open() slot corresponds to File|Open. Like newFile(), it first calls maybe-
save() to handle any unsaved changes. Then it uses the static convenience
function QFileDialog::getOpenFileName () to obtain a file name. The function
pops up a file dialog, lets the user choose a file, and returns the file name—or
an empty string if the user clicked Cancel.

We give the getOpenFileName () function three arguments. The first argument
tells it which directory it should start from, in our case the current directory.
The second argument, fileFilters, specifies the file filters. A file filter consists
of a descriptive text and a wildcard pattern. In the Mainwindow constructor,
fileFilters was initialized as follows:

fileFilters = tr("Spreadsheet files (*.sp)");

Had we supported comma-separated values files and Lotus 1-2-3 files in
addition to Spreadsheet’s native file format, we would have initialized the
variable as follows:

Implementing the File Menu 51

fileFilters = tr("Spreadsheet files (*.sp)\n"
"Comma-separated values files (*.csv)\n"
"Lotus 1-2-3 files (*.wk?)");

Finally, the third argument to getOpenFileName () specifies that the QFileDialog
that pops up should be a child of the main window.

The parent—child relationship doesn’t mean the same thing for dialogs as
for other widgets. A dialog is always a top-level widget (a window in its own
right), but if it has a parent, it is centered on top of the parent by default. A
child dialog also shares the parent’s taskbar entry.

void MainWindow::loadFile(const QString &fileName)
{
if (spreadsheet->readFile(fileName)) {
setCurrentFile(fileName) ;

statusBar()->message(tr("File loaded"), 2000);
} else {
statusBar () ->message(tr("Loading canceled"), 2000);

}
}

The 1oadFile() private function was called in open() to load the file. We make
it an independent function because we will need the same functionality to load
recently opened files.

We use Spreadsheet: :readFile() toread thefile from the disk. If loading is suc-
cessful, we call setCurrentFile() to update the window’s caption. Otherwise,
Spreadsheet::loadFile() will have already notified the user of the problem
through a message box. In general, it is good practice to let the lower-level
components issue error messages, since they can provide the precise details of
what went wrong.

In both cases, we display a message in the status bar for 2000 milliseconds
(2 seconds) to keep the user informed about what the application is doing.

bool MainWindow::save()
{
if (curFile.isEmpty()) {
return saveds();
} else {
saveFile(curFile);
return true;

}

void MainWindow::saveFile(const QString &fileName)
{
if (spreadsheet->writeFile(fileName)) {
setCurrentFile(fileName) ;
statusBar()->message(tr("File saved"), 2000);
} else {
statusBar () ->message(tr("Saving canceled"), 2000);

}

52 3. Creating Main Windows

The save() slot corresponds to File|Save. If the file already has a name because
it was opened before or has already been saved, save() calls saveFile() with
that name; otherwise, it simply calls saveas ().

bool MainWindow::saveAs()
{
QString fileName =
QFileDialog::getSaveFileName(".", fileFilters, this);
if (fileName.isEmpty())
return false;

if (QFile::exists(fileName)) {
int ret = QMessageBox::warning(this, tr("Spreadsheet"),
tr("File %1 already exists.\n"
"Do you want to overwrite it?")
.arg(QDir::convertSeparators(fileName)),
QMessageBox::Yes | QMessageBox::Default,
QMessageBox::No | QMessageBox::Escape);
if (ret == QMessageBox::No)
return true;
}
if (!fileName.isEmpty())
saveFile(fileName) ;
return true;

}

The saveas() slot corresponds to File|Save As. We call QFileDialog::getSave-
FileName() to obtain a file name from the user. If the user clicks Cancel, we
return false, which is propagated up to maybeSave (). Otherwise, the returned
file name may be a new name or the name of an existing file. In the case of an
existing file, we call QMessageBox: :warning () to display the message box shown
in Figure 3.10.

= File Momedisarshestspopulation sp already exists.
\I) Do wou want to averwrite it?

Yes Mo |

Figure 3.10. “Do you want to overwrite it?”

The text we passed to the message box is

tr("File %1 already exists\n"
"Do you want to override it?")
.arg(QDir::convertSeparators(fileName))

The QString::arg() function replaces the lowest-numbered “%n” parameter
with its argument and returns the resulting string. For example, if the file
name is A: \tab04. sp, the code above is equivalent to

Implementing the File Menu 53

"File A:\\tab04.sp already exists.\n"
"Do you want to override it?"

assuming that the application isn’t translated into another language. The
QDir::convertSeparators () call converts forward slashes, which Qt uses as a
portable directory separator, into the platform-specific separator (* on Unix
and Mac OS X, ‘\’ on Windows).

void MainWindow::closeEvent (QCloseEvent *event)

{

if (maybeSave()) {
writeSettings();
event->accept () ;
} else {

event->ignore() ;
}
}

When the user clicks File|Exit, or clicks X in the window’s title bar, the gwidget: :
close() slot is called. This sends a “close” event to the widget. By reimple-
menting QWidget::closeEvent (), we can intercept attempts to close the main
window and decide whether we want the window to close or not.

If there are unsaved changes and the user chooses Cancel, we “ignore” the
event and leave the window unaffected by it. Otherwise, we accept the event,
resulting in Qt closing the window and the application terminating.

void MainWindow::setCurrentFile(const QString &fileName)
{

curFile = fileName;

modLabel->clear();

modified = false;

if (curFile.isEmpty()) {
setCaption(tr("Spreadsheet"));

} else {
setCaption(tr("%l - %2").arg(strippedName (curFile))

.arg(tr("Spreadsheet")));

recentFiles.remove (curFile);
recentFiles.push_front(curFile);
updateRecentFileItems () ;

}

QString MainWindow::strippedName (const QString &fullFileName)
{

return QFileInfo(fullFileName).fileName();
}

In setCurrentFile(), we set the curFile private variable that stores the
name of the file being edited, clear the MOD status indicator, and update the
caption. Notice how arg() is used with two “%n” parameters. The first call to
arg() replaces “%1”; the second call replaces “%2”. It would have been easier
to write

54 3. Creating Main Windows

setCaption(strippedName(curFile) + tr(" - Spreadsheet"));

but using arg () gives more flexibility to translators. We remove the file’s path
with strippedName() to make the file name more user-friendly.

If there is a file name, we update recentFiles, the application’s recently
opened files list. We call remove() to remove any occurrence of the file name
in the list; then we call push_front() to add the file name as the first item.
Calling remove () first is necessary to avoid duplicates. After updating the list,
we call the private function updateRecentFileltems () to update the entries in
the File menu.

The recentFiles variable is of type QStringList (list of QStrings). Chapter 11
explains container classes such as QStringList in detail and how they relate to
the C++ Standard Template Library (STL).

This almost completes the implementation of the File menu. There is one
function and one supporting slot that we have not implemented yet. Both are
concerned with managing the recently opened files list.

[Hew Ctrl+ N

S Open.. Ctrl+0

ANE Cirl+5
Save As...
1 tab04 sp

R
— 2 sales 2001 3p
>
—_—
—_—

l«— separator

recentFileIds[0]
recentFileIds([1
recentFileIds[2] 3 Annual Report sp
recentFileIds[3] 4 population.sp

4

recentFileIds[4] 5 Customers sp

Ezxit Ctrl+0

Figure 3.11. File menu with recently opened files

void MainWindow: :updateRecentFilelItems ()
{
while ((int)recentFiles.size() > MaxRecentFiles)
recentFiles.pop_back();

for (int i = 0; i < (int)recentFiles.size(); ++i) {
QString text = tr("&%l %2")
.arg(i + 1)
.arg(strippedName (recentFiles[i]));
if (recentFileIds[i] == -1) {
if (i == 0)
fileMenu->insertSeparator (fileMenu->count() - 2);
recentFileIds[i] =
fileMenu->insertItem(text, this,

Implementing the File Menu 55

SLOT (openRecentFile(int)),
0, -1,
fileMenu->count() - 2);
fileMenu->setItemParameter (recentFileIds[i], 1);
} else {
fileMenu->changeltem(recentFileIds([i], text);
}

}

The updateRecentFileltenms () private function is called to update the recently
opened files menu items. We begin by making sure that there are no more
items in the recentFiles list than are allowed (MaxRecentFiles, defined as 5 in
mainwindow.h), removing any extra items from the end of the list.

Then, for each entry, we either create a new menu item or reuse an existing
item if one exists. The very first time we create a menu item, we also insert a
separator. We do this here and not in createMenus () to ensure that we never
display two separatorsin a row. The setItemParameter () call will be explained
in a moment.

It may seem strange that we create items in updateRecentFileItems() but
never delete items. This is because we can assume that the recently opened
files list never shrinks during a session.

The QPopupMenu: : insertItem() function we called has the following syntax:
fileMenu->insertItem(text, receiver, slot, accelerator, id, index);

The text is the text displayed in the menu. We use strippedName() to remove
the path from the file names. We could keep the full file names, but that
would make the File menu very wide. If full file names are preferred, the best
solution is to put the recently opened files in a submenu.

The receiver and slot parameters specify the slot that should be called when
the user chooses the item. In our example, we connect to MainWindow’s open-
RecentFile(int) slot.

For accelerator and id, we pass default values, meaning that the menu item
has no accelerator and an automatically generated ID. We store the generated
ID in the recentFileIds array so that we can access the items later.

The index is the position where we want to insert the item. By passing the
value fileMenu->count () - 2, we insert it above the Exit item’s separator.

void MainWindow::openRecentFile(int param)
{
if (maybeSave())
loadFile(recentFiles [param]);
}

The openRecentFile() slot is where everything falls into place. The slot is
called when a recently opened file is chosen from the File menu. The int
parameter is the value that we set earlier with setItemParameter(). We chose

56 3. Creating Main Windows

the values in such a way that we can use them magically as indexes into the
recentFiles list.

Menu items Recently opened files
ID text param index value
-32 | 1tab04.sp 0 — 0 A:tab04.sp
-33 | 2sales2001.sp 1 — 1 C:\sales 2001.sp
-34 | 3 Annual Report.sp 2 — 2 D:\Annual Report.sp
-35 | 4 population.sp 3 — 3 C:\population.sp
-36 | 5 Customers.sp 4 — 4 C:\Customers.sp

Figure 3.12. Managing recently opened files

This is one way to solve the problem. A less elegant solution would have been
to create five actions and connect them to five separate slots.

Setting Up the Status Bar

With the menus and toolbars complete, we are ready to tackle the Spreadsheet
application’s status bar. In its normal state, the status bar contains three
indicators: the current cell’s location, the current cell’s formula, and MOD. The
status bar is also used to display status tips and other temporary messages.

[TBs [-at+ha+as [MOD
Normal
| Open an existing spreadsheet file A
Status tip

| File saved A

Temporary message

Figure 3.13. The Spreadsheet application’s status bar

The MainWindow constructor calls createStatusBar () to set up the status bar:

void MainWindow::createStatusBar()

{
locationLabel = new QLabel ("™ W999 ", this);
locationLabel->setAlignment (AlignHCenter) ;
locationLabel->setMinimumSize(locationLabel->sizeHint());

formulaLabel = new QLabel (this);

modLabel = new QLabel (tr("™ MOD "), this);
modLabel->setAlignment (AlignHCenter) ;
modLabel->setMinimumSize (modLabel->sizeHint());

Setting Up the Status Bar 57

modLabel->clear() ;

statusBar()->addwWidget (locationLabel) ;
statusBar()->addWidget (formulaLabel, 1);
statusBar () ->addwWidget (modLabel) ;

connect (spreadsheet, SIGNAL(currentChanged(int, int)),
this, SLOT(updateCellIndicators()));

connect (spreadsheet, SIGNAL(modified()),
this, SLOT(spreadsheetModified()));

updateCellIndicators();
}

The QMainWindow::statusBar() function returns a pointer to the status bar.
(The status bar is created the first time statusBar () is called.) The status in-
dicators are simply QLabels whose text we change whenever necessary. When
constructing the QLabels, we pass this as the parent, but it doesn’t really mat-
ter since QStatusBar::addWidget() automatically “reparents” them to make
them children of the status bar.

Figure 3.13 shows that the three labels have different space requirements.
The cell location and MOD indicators require very little space, and when the
window is resized, any extra space should go to the cell formula indicator in
the middle. This is achieved by specifying a stretch factor of 1in its QStatus-
Bar::addWidget () call. The other two indicators have the default stretch factor
of 0, meaning that they prefer not to be stretched.

When @statusBar lays out indicator widgets, it tries to respect each widget’s
ideal size as given by Qwidget::sizeHint () and then stretches any stretchable
widgets to fill the available space. A widget’s ideal size is itself dependent on
the widget’s content and varies as we change the content. To avoid constant
resizing of the location and MOD indicators, we set their minimum sizes to
be wide enough to contain the largest possible text on each of the indicators
(“W999” and “MOD”), with a little extra space. We also set their alignment to
AlignHCenter to horizontally center their text.

Near the end of the function, we connect two of Spreadsheet’s signals to two of
MainWindow's slots: updateCellIndicators() and spreadsheetModified().

void MainWindow::updateCellIndicators()

{
locationLabel->setText (spreadsheet->currentLocation());
formulaLabel->setText (" " + spreadsheet->currentFormula());

}

The updateCellIndicator() slot updates the cell location and the cell formula
indicators. It is called whenever the user moves the cell cursor to a new cell.
The slot is also used as an ordinary function at the end of createStatusBar()
toinitialize the indicators. This is necessary because Spreadsheet doesn’t emit
a currentChanged() signal at startup.

void MainWindow: :spreadsheetModified()

{

58 3. Creating Main Windows

modLabel->setText (tr ("MOD")) ;
modified = true;
updateCellIndicators();

}

The spreadsheetModified () slot updates all three indicators so that they reflect
the current state of affairs, and sets the modified variable to true. (We used the
modified variable when implementing the File menu to determine whether or
not there were unsaved changes.)

Using Dialogs

In this section, we will explain how to use dialogs in Qt—how to create and
initialize them, run them, and respond to choices made by the user interacting
with them. We will make use of the Find, Go-to-Cell, and Sort dialogs that we
created in Chapter 2. We will also create a simple About box.

We will begin with the Find dialog. Since we want the user to be able to switch
between the main Spreadsheet window and the Find dialog at will, the Find
dialog must be modeless. A modeless window is one that runs independently
of any other windows in the application.

When modeless dialogs are created, they normally have their signals connect-
ed to slots that respond to the user’s interactions.

void MainWindow::find()
{
if (!findDialog) {
findDialog = new FindDialog(thisg);
connect (findDialog, SIGNAL(findNext(const QString &, bool
spreadsheet, SLOT(findNext(const QString &, bool)
connect (findDialog, SIGNAL(findPrev(const QString &, bool

),
))
),
spreadsheet, SLOT(findPrev(const QString &, bool)));

}

findDialog->show() ;

findDialog->raise();

findDialog->setActiveWindow() ;
}

The Find dialog is a window that enables the user to search for text in the
spreadsheet. The find() slot is called when the user clicks Edit|Find to pop up
the Find dialog. At that point, several scenarios are possible:

¢ This is the first time the user has invoked the Find dialog.
¢ The Find dialog was invoked before, but the user closed it.

¢ The Find dialog was invoked before and is still visible.

If the Find dialog doesn’t already exist, we create it and connect its findNext ()
and findprev() signals to Spreadsheet’s matching slots. We could also have
created the dialog in the Mainwindow constructor, but delaying its creation

Using Dialogs 59

makes startup faster. Also, if the dialog is never used, it is never created,
saving both time and memory.

Then we call show(), raise(),and setActiveWindow() to ensure that the window
is visible, on top of the others, and active. A call to show() alone is sufficient to
make a hidden window visible, but the Find dialog may be invoked when its
window is already visible, in which case show() does nothing. Since we must
make the dialog’s window visible, active, and on top regardless of its previous
state, we must use the raise() and setActiveWindow() calls. An alternative
would have been to write

if (findDialog->igHidden()) {
findDialog->show() ;

} else {
findDialog->raise() ;
findDialog->setActiveWindow() ;

}
the programming equivalent of driving along at 90 in a 100 km/h zone.

We will now look at the Go-to-Cell dialog. We want the user to pop it up, use
it, and close it without being able to switch from the Go-to-Cell dialog to any
other window in the application. This means that the Go-to-Cell dialog must
be modal. A modal window is a window that pops up when invoked and blocks
the application, preventing any other processing or interactions from taking
place until the window is closed. With the exception of the Find dialog, all the
dialogs we have used so far have been modal.

A dialog is modeless if it’s invoked using show() (unless we call setModal ()
beforehand to make it modal); it is modal if it’s invoked using exec(). When
we invoke modal dialogs using exec(), we typically don’t need to set up any
signal—slot connections.

void MainWindow::goToCell ()
{
GoToCellDialog dialog(this);

if (dialog.exec()) {
QString str = dialog.lineEdit->text();
spreadsheet->setCurrentCell (str.mid(1).toInt() - 1,

str[0] .upper().unicode() - "A'");

}

The Qpialog::exec() function returns true if the dialog is accepted, false oth-
erwise. (Recall that when we created the Go-to-Cell dialog using @t Designer
in Chapter 2, we connected OK to accept () and Cancel to reject ().) If the user
chooses OK, we set the current cell to the value in the line editor; if the user
chooses Cancel, exec() returns false and we do nothing.

The QTable::setCurrentCell() function expects two arguments: a row index
and a column index. In the Spreadsheet application, cell Al is cell (0, 0)
and cell B27 is cell (26, 1). To obtain the row index from the 9String returned
by QLabel::text(), we extract the row number using QString::mid() (which

60 3. Creating Main Windows

returns a substring from the start position to the end of the string), convert it
to an int using QString::toInt(), and subtract 1 to make it 0-based. For the
column number, we subtract the numeric value of ‘A’ from the numeric value
of the string’s upper-cased first character.

Unlike Find, the Go-to-Cell dialog is created on the stack. This is a common
programming pattern for modal dialogs, just as it is for context menus, since
we don’t need the dialog after we have used it.

We will now turn to the Sort dialog. The Sort dialog is a modal dialog that
allows the user to sort the currently selected area by the columns they specify.
Figure 3.14 shows an example of sorting, with column B as the primary sort
key and column A as the secondary sort key (both ascending).

A |& |c |o
Johin Addams 1797-1501
Jokhn Quincy Acdams 1825-1529
Apcre Jackson 1529-1537
Thomas Jefferaon 1501-1509
James Madizon 1508-1517
Jarnes Manroe 1817-1825
I George ‘Wazhington
(a) Before sort (b) After sort

Figure 3.14. Sorting the spreadsheet’s selected area

void MainWindow: :sort()

{
SortDialog dialog(this);
QTableSelection sel = spreadsheet->selection();
dialog.setColumnRange(’A’ + sel.leftCol(), 'A’ + sel.rightCol());

if (dialog.exec()) {
SpreadsheetCompare compare;
compare.keys[0] =
dialog.primaryColumnCombo->currentItem() ;
compare.keys[1l] =

dialog.secondaryColumnCombo->currentItem() - 1;
compare.keys[2] =
dialog.tertiaryColumnCombo->currentItem() - 1;

compare.ascending[0] =
(dialog.primaryOrderCombo->currentItem() == 0);
compare.ascending[1l] =
(dialog.secondaryOrderCombo->currentItem() == 0);
compare.ascending[2] =
(dialog.tertiaryOrderCombo->currentItem() == 0);
spreadsheet->sort (compare) ;

Using Dialogs 61

The code in sort () follows a similar pattern to that used for goToCel1():
* We create the dialog on the stack and initialize it.
¢ We pop up the dialog using exec().

¢ If the user clicks OK, we extract the values entered by the user from the
dialog’s widgets and make use of them.

The compare object stores the primary, secondary, and tertiary sort keys and
sort orders. (We will see the definition of the SpreadsheetCompare class in the
next chapter.) The object is used by Spreadsheet::sort () to compare two rows.
The keys array stores the column numbers of the keys. For example, if the
selection extends from C2 to E5, column C has position 0. The ascending array
stores the order associated with each key as a bool. QComboBox: : currentItem()
returns the index of the currently selected item, starting at 0. For the sec-
ondary and tertiary keys, we subtract one from the current item to account for
the “None” item.

The sort () dialog does the job, but it is very fragile. It takes for granted that
the Sort dialog is implemented in a certain way, with comboboxes and “None”
items. This means that if we redesign the Sort dialog, we may also need to
rewrite this code. While this approach is adequate for a dialog that is only
called from one place, it opens the door to maintenance nightmares if the
dialog is used in several places.

A more robust approach is to make the SortDialog class smarter by having
it create a SpreadsheetCompare object itself, which can then be accessed by its
caller. This simplifies MainWindow: :sort () significantly:

void MainWindow: :sort()
{
SortDialog dialog(this);
QTableSelection sel = spreadsheet->selection();
dialog.setColumnRange('A’ + sel.leftCol(), "A’ + sel.rightCol());
if (dialog.exec())
spreadsheet->performSort (dialog.comparisonObject());

}

This approach leads to loosely coupled components and is almost always the
right choice for dialogs that will be called from more than one place.

A more radical approach is to pass a pointer to the Spreadsheet object when
initializing the SortDialog object and to allow the dialog to operate directly
on the spreadsheet. This makes the Sortdialog much less general, since it will
only work on a certain type of widget, but it simplifies the code ever further
by eliminating the SortDialog::setColumnRange () function. The MainWindow: :
sort () function then becomes

void MainWindow: :sort()

{
SortDialog dialog(this);
dialog.setSpreadsheet (spreadsheet);

62 3. Creating Main Windows

dialog.exec();

}

This approach mirrors the first: Instead of the caller needing intimate knowl-
edge of the dialog, the dialog needs intimate knowledge of the data structures
supplied by the caller. This approach may be useful where the dialog needs
to apply changes live. But just as the caller code is fragile using the first ap-
proach, this third approach breaks if the data structures change.

Some developers choose just one approach to using dialogs and stick with that.
This has the benefit of familiarity and simplicity since all their dialog usages
follow the same pattern, but it also misses the benefits of the approaches that
are not used. The decision on which approach to use should be made on a
per-dialog basis.

We will round off this section with a simple About box. We could create a cus-
tom dialog like the Find or Go-to-Cell dialogs to present the “about” informa-
tion, but since most About boxes are highly stylized, Qt provides a simpler so-
lution.

void MainWindow: :about ()
{
QMessageBox::about (this, tr("About Spreadsheet"),
tr("<h2>Spreadsheet 1.0</h2>"

"<p>Copyright © 2003 Software Inc."
"<p>Spreadsheet is a small application that "
"demonstrates QAction, QMainWindow, "
"<pb>QMenuBar, QStatusBar, "
"QToolBar, and many other Qt classes."));

}

The About box is obtained by calling QMessageBox: :about (), a static conve-
nience function. The function is very similar to QMessageBox: :warning (), except
that it uses the parent window’s icon instead of the standard “warning” icon.

@ Spreadsheet 1.0

Copyright @ 2003 Software Inc.

Spreadsheet is a small application that demonstrates
QAction, QMainWindow, OMenuBar, O5tatusBar,
OToolBar, and many other Ot classes.

Figure 3.15. About Spreadsheet

So far we have used several convenience static functions from both QMessageBox
and QFileDialog. These functions create a dialog, initialize it, and call exec()
on it. It is also possible, although less convenient, to create a QMessageBox or
a QFileDialog widget like any other widget and explicitly call exec(), or even
show (), on it.

Storing Settings 63

Storing Settings

In the MainwWindow constructor, we called readsettings() to load the applica-
tion’s stored settings. Similarly, in closeEvent (), we called writeSettings() to
save the settings. These two functions are the last MainwWindow member func-
tions that need to be implemented.

The arrangement we opted for in Mainwindow, with all the gSettings-related
code in readSettings() and writeSettings(), is just one of many possible
approaches. A Qsettings object can be created to query or modify some setting
at any time during the execution of the application and from anywhere in
the code.

void MainWindow::writeSettings()

{
QSettings settings;
settings.setPath("software-inc.com", "Spreadsheet");
settings.beginGroup ("/Spreadsheet");
settings.writeEntry("/geometry/x", x());
settings.writeEntry("/geometry/y", y());
settings.writeEntry("/geometry/width", width());
settings.writeEntry("/geometry/height", height());
settings.writeEntry("/recentFiles", recentFiles);
settings.writeEntry("/showGrid", showGridAct->1isOn());
settings.writeEntry("/autoRecalc", showGridAct->isOn());
settings.endGroup() ;

}

The writeSettings() function saves the main window’s geometry (position
and size), the list of recently opened files, and the Show Grid and Auto-recalculate
options.

QSettings stores the application’s settings in platform-specific locations. On
Windows, it uses the system registry; on Unix, it stores the data in text files;
on Mac OS X, it uses the Carbon preferences API. The setPath() call provides
QSettings with the organization’s name (as an Internet domain name) and the
product’s name. This information is used in a platform-specific way to find a
location for the settings.

QSettings stores settings as key—value pairs. The key is similar to a file system
path and should always start with the name of the application. For example,
/Spreadsheet/geometry/x and /Spreadsheet/showGrid are valid keys. (The
beginGroup() call saves us from writing /Spreadsheet in front of every key.)
The value can be an int, a bool, a double, a QString, or a QStringList.

void MainWindow::readSettings()

{
QSettings settings;
settings.setPath("software-inc.com", "Spreadsheet");
settings.beginGroup ("/Spreadsheet") ;

int x = settings.readNumEntry("/geometry/x", 200);
int y = settings.readNumEntry("/geometry/y", 200);

64 3. Creating Main Windows

int w = settings.readNumEntry("/geometry/width", 400);
int h = settings.readNumEntry("/geometry/height", 400);
move (X, y);

resize(w, h);

recentFiles = settings.readListEntry("/recentFiles");
updateRecentFileItems () ;

showGridAct->setOn (
settings.readBoolEntry("/showGrid", true));

autoRecalcAct->setOn (
settings.readBoolEntry("/autoRecalc", true));

settings.endGroup() ;

}

The readSettings() function loads the settings that were saved by writeSet-
tings (). The second argument to the “read” functions specifies a default value,
in case there are no settings available. The default values are used the first
time the application is run.

We have now completed the Spreadsheet’s MainWindow implementation. In the
following sections, we will discuss how the Spreadsheet application can be
modified to handle multiple documents and how to implement a splash screen.
We will complete its functionality in the next chapter.

Multiple Documents

We are now ready to code the Spreadsheet application’s main() function:
#include <gapplication.h>
#include "mainwindow.h"

int main(int argc, char *argv([])
{
QApplication app(argc, argv);
MainWindow mainWin;
app.setMainWidget (&mainWin) ;
mainWin.show() ;
return app.exec();

}

This main () function is a little bit different from those we have written so far:
We have created the Mainwindow instance as a variable on the stack instead of
using new. The MainWindow instance is then automatically destroyed when the
function terminates.

With the main() function shown above, the Spreadsheet application provides
a single main window and can only handle one document at a time. If we
want to edit multiple documents at the same time, we could start multiple
instances of the Spreadsheet application. But this isn’t as convenient for
users as having a single instance of the application providing multiple main

Multiple Documents 65

windows, just as one instance of a web browser can provide multiple browser
windows simultaneously.

We will modify the Spreadsheet application so that it can handle multiple
documents. First, we need a slightly different File menu:

* File|New creates a new main window with

an empty document, instead of recycling [new Cirl+N
the current main window. S goen.. Cirl+0
* File|Close closes the current main] sove Ciries
window. Save 5.
. . . LCloze Ctri+w
* File|Exit closes all windows. .
Exit Cirl+0

In the original version of the File menu, there
was no Close option because that would have
been the same as Exit.

Figure 3.16. The new File menu

This is the new main () function:
#include <gapplication.h>
#include "mainwindow.h"

int main(int argc, char *argv[])
{
QApplication app(argc, argv);
MainWindow *mainWin = new MainWindow;
mainWin->show() ;
QObject::connect (&app, SIGNAL(lastWindowClosed()),
&app, SLOT(quit()));
return app.exec();

}

We connect QApplication’s lastWindowClosed() slot to QApplication’s quit()
slot, which will terminate the application.

With multiple windows, it now makes sense to create MainWindow with new,
because then we can use delete on a main window when we have finished with
it to save memory. This issue doesn’t arise if the application uses just one
main window.

This is the new MainWindow: :newFile() slot:

void MainWindow::newFile()

{
MainWindow *mainWin = new MainWindow;
mainWin->show() ;

}

We simply create a new Mainwindow instance. It may seem odd that we don’t
keep any pointer to the new window, but that isn’t a problem since Qt keeps
track of all the windows for us.

These are the actions for Close and Exit:

66 3. Creating Main Windows

closeAct = new QAction(tr("&Close"), tr("Ctrl+w"), this);
connect (closeAct, SIGNAL(activated()), this, SLOT(close()));

exitAct = new QAction(tr("E&xit"), t
connect (exitAct, SIGNAL(activated())
gApp, SLOT(closeAllWindows ()

r("Ctrl+Q"), this);

));

QApplication’s closeAllWindows () slot closes all of the application’s windows,
unless one of them rejects the close event. This is exactly the behavior we need

here. We don’t have to worry about unsaved changes because that’s handled
in MainWindow: : closeEvent () whenever a window is closed.

It looks as if we have finished making the application capable of handling
multiple windows. Unfortunately, there is a hidden problem lurking: If the
user keeps creating and closing main windows, the machine might run out
of memory! This is because we keep creating Mainwindow widgets in newFile()
but we never delete them. When the user closes a main window, the default
behavior is to hide it, so it still remains in memory. With many main windows,
this can be a problem.

The solution is to add the wpestructiveClose flag to the constructor:

MainWindow: :MainWindow (QWidget *parent, const char *name)
: QMainWindow(parent, name, WDestructiveClose)

{
}

This tells Qt to delete the window when it is closed. The wWpestructiveClose
flag is one of many flags that can be passed to the Qwidget constructor to
influence a widget’s behavior. Most of the other flags are rarely needed in
Qt applications.

Memory leaking isn’t the only problem that we must deal with. Our original
application design included an implied assumption that we would only have
one main window. With multiple windows, each main window has its own
recently opened files list and its own options. Clearly,the recently opened files
list should be global to the whole application. We can achieve this quite easily
by declaring the recentFiles variable static, so that only one instance of it
exists for the whole application. But then we must ensure that wherever we
called updateRecentFileItems () to update the File menu, we must call it on all
main windows. Here’s the code to achieve this:

QWidgetList *1list = QApplication::topLevelWidgets();
QWidgetListIt it(*list);
QWidget *widget;
while ((widget = it.current())) {
if (widget->inherits("MainWindow"))
((MainWindow *)widget)->updateRecentFilelItems();
++it;
}
delete list;

Multiple Documents 67

The code iterates over all the application’s top-level widgets and calls update-
RecentFileItems () on all widgets of type MainWindow. Similar code can be used
for synchronizing the Show Grid and Auto-recalculate options, or to make sure that
the same file isn’t loaded twice. The QwidgetList type is a typedef for Qptr-
List<QWidget>, which is presented in Chapter 11 (Container Classes).

- - report-2004.3p |E@E\

Fle Edit Tools Options Help

IEEE =T
[|c |p

104323 250
1075 2
=

[e

=

WD SHROB[@ b
A B [c [o f’

= oo Popetion
5000 B.C. 5 million
50 A0, 200 million

1650 A.D. 500 milion

1850 A.D. 1 billion

1345 A.D. 2.3 billon

1980 4D,

15980 AD. 4.4 billion

AT [Vear I
I

Figure 3.17. SDI vs. MDI

Applications that provide one document per main window are said to be SDI
(single document interface) applications. A popular alternative is MDI (mul-
tiple document interface), where the application has a single main window
that manages multiple document windows within its central area. Qt can be
used to create both SDI and MDI applications on all its supported platforms.
Figure 3.17 shows the Spreadsheet application using both approaches. MDI
is explained in Chapter 6 (Layout Management).

Splash Screens

Many applications present a splash screen at startup. Some developers use
a splash screen to disguise a slow startup, while others do it to satisfy their
marketing departments. Adding a splash screen to Qt applications is very
easy using the QSplashScreen class.

The @SplashScreen class shows an image before the application proper has
started. It can also draw a message on the image, to inform the user about
the progress of the application’s initialization process. Typically, the splash
screen code is located in main (), before the call to QApplication::exec().

Below is an example main() function that uses QSplashScreen to present a
splash screen in an application that loads modules and establishes network
connections at startup.

int main(int argc, char *argv[])
{
QApplication app(argc, argv);

68 3. Creating Main Windows

QSplashScreen *splash =
new QSplashScreen(QPixmap::fromMimeSource("splash.png"));
splash->show() ;

splash->message(QObject::tr("Setting up the main window..."),
Qt::AlignRight | Qt::AlignTop, Qt::white);

MainWindow mainWin;

app.setMainWidget (&mainWin) ;

splash->message(QObject::tr("Loading modules..."),
Qt::AlignRight | Qt::AlignTop, Qt::white);
loadModules () ;

splash->message(QObject::tr("Establishing connections..."),
Qt::AlignRight | Qt::AlignTop, Qt::white);
establishConnections () ;

mainWin. show() ;
splash->finish(&mainWin) ;
delete splash;

return app.exec();

Software Inc.

- & w. S
o - -

SPREADSHEET

1.0

wwuwsoftware=inc.com

Figure 3.18. A QSplashScreen widget

We have now completed the Spreadsheet application’s user interface. In
the next chapter, we will complete the application by implementing the core
spreadsheet functionality.

® The Central Widget

* Subclassing QTable

* Loading and Saving

* Implementing the Edit Menu

e Implementing the Other
Menus

* Subclassing QTableltem

Implementing Application
Functionality

In the previous two chapters, we explained how to create the Spreadsheet
application’s user interface. In this chapter, we will complete the program by
coding its underlying functionality. Among other things, we will see how to
load and save files, how to store data in memory, how to implement clipboard
operations, and how to add support for spreadsheet formulas to Qrable.

The Central Widget

The central area of a QMainWindow can be occupied by any kind of widget.
Here’s an overview of the possibilities:

1. Use a standard Qt widget.

A standard widget like QTable or QTextEdit can be used as a central wid-
get. In this case, the application’s functionality, such as loading and sav-
ing files, must be implemented elsewhere (for example, in a QMainWindow
subclass).

2. Use a custom widget.

Specialized applications often need to show data in a custom widget. For
example, an icon editor program would have an IconEditor widget as its
central widget. Chapter 5 explains how to write custom widgets in Qt.

3. Use a plain QWidget with a layout manager.

Sometimes the application’s central area is occupied by many widgets.
This can be done by using a Qwidget as the parent of all the other widgets,
and using layout managers to size and position the child widgets.

69

70

4. Implementing Application Functionality

4. Use a splitter.

Another way of using multiple widgets together is to use a QSplitter. The
QSplitter arranges its child widgets side by side like a QHBox, or in a col-
umn like a QvBox, with splitter handles to give some sizing control to the
user. Splitters can contain all kinds of widgets, including other splitters.

5. Use an MDI workspace.

If the application uses MDI, the central area is occupied by a Qworkspace
widget, and each of the MDI windows is a child of that widget.

Layouts, splitters, and MDI workspaces can be used in combination with
standard Qt widgets or with custom widgets. Chapter 6 covers these classes

in depth.

For the Spreadsheet application, a QTable subclass is used as the central
widget. The QTable class already provides most of the spreadsheet capability
we need, but it doesn’t understand spreadsheet formulas like “=A1+A2+A3”,
and it doesn’t support clipboard operations. We will implement this missing

functionality in the Spreadsheet class, which inherits from QTable.

Subclassing QTable

We will now start implementing the Spreadsheet widget, beginning with the

header file:

#ifndef SPREADSHEET_H
#define SPREADSHEET H

#include <gstringlist.h>
#include <gtable.h>

class Cell;
class SpreadsheetCompare;

The header starts with forward declarations for the cell and SpreadsheetCom-

pare classes.

Qt

l—l—l

QObject QTableltem

I |
QWidget Cell

QTable
I
Spreadsheet

Figure 4.1. Inheritance tree for Spreadsheet and Cell

Subclassing QTable 71

The attributes of a QTable cell, such as its text and its alignment, are stored
in a QTableItem. Unlike QTable, QTableItemisn’t a widget class;it is a pure data
class. The cell class is a QTableItem subclass. In addition to the standard
QTableItem attributes, Cell stores a cell’s formula.

We will explain the cell class when we present its implementation in the last
section of this chapter.

class Spreadsheet : public QTable
{
Q_OBJECT
public:
Spreadsheet (QWidget *parent = 0, const char *name = 0);

void clear();

QString currentLocation() const;

QString currentFormula() const;

bool autoRecalculate() const { return autoRecalc; }
bool readFile(const QString &fileName);

bool writeFile(const QString &fileName);
QTableSelection selection();

void sort(const SpreadsheetCompare &compare) ;

The spreadsheet class inherits from QTable. Subclassing QTable is very similar
to subclassing gbialog or QMainWindow.

In Chapter 3, we relied on many public functions in Spreadsheet when we
implemented MainWindow. For example, we called clear() from MainWindow: :
newFile() to reset the spreadsheet. We also used some functions inherited
from QTable, notably setCurrentCell () and setShowGrid().

public slots:
void cut();
void copy();
void paste();
void del();
void selectRow();
void selectColumn();
void selectAll();
void recalculate();
void setAutoRecalculate(bool on);
void findNext(const QString &str, bool caseSensitive);
void findPrev(const QString &str, bool caseSensitive);

signals:
void modified();

Spreadsheet provides many slots that implement actions from the Edit, Tools,
and Options menus.

protected:
QWidget *createEditor(int row, int col, bool initFromCell) const;
void endEdit(int row, int col, bool accepted, bool wasReplacing);

72 4. Implementing Application Functionality

Spreadsheet reimplements two virtual functions from QTable. These functions
are called by gTable itself when the user starts editing the value of a cell. We
need to reimplement them to support spreadsheet formulas.

private:
enum { MagicNumber = 0x7F51C882, NumRows = 999, NumCols = 26 };

Cell *cell(int row, int col) const;

void setFormula(int row, int col, const QString &formula);
QString formula(int row, int col) const;

void somethingChanged() ;

bool autoRecalc;

}i

In the class’s private section, we define three constants, four functions, and
one variable.

class SpreadsheetCompare
{
public:
bool operator() (const QStringList &rowl,
const QStringList &row2) const;

enum { NumKeys = 3 };
int keys[NumKeys];
bool ascending[NumKeys] ;

}i
#endif

The header file ends with the SpreadsheetCompare class declaration. We will
explain this when we review Spreadsheet: :sort().

We will now look at the implementation, explaining each function in turn:

#include <gapplication.h>
#include <gclipboard.h>
#include <gdatastream.h>
#include <qgfile.h>
#include <qglineedit.h>
#include <gmessagebox.h>
#include <gregexp.h>
#include <gvariant.h>

#include <algorithm>
#include <vector>
using namespace std;

#include "cell.h"
#include "spreadsheet.h"

We include the header files for the Qt classes the application will use. We also
include the standard C++ <algorithm> and <vector> header files. The using
namespace directive imports all the symbols from the std namespace into the
global namespace, allowing us to write stable_sort () and vector<T> instead of
std::stable_sort() and std::vector<T>

Subclassing QTable 73

Spreadsheet: :Spreadsheet (QWidget *parent, const char *name)
: QTable(parent, name)
{
autoRecalc = true;
setSelectionMode (Single) ;
clear();

}

In the constructor, we set the gTable selection mode to Single. This ensures
that only one rectangular area in the spreadsheet can be selected at a time.

void Spreadsheet::clear()
{
setNumRows (0) ;
setNumCols (0) ;
setNumRows (NumRows) ;
setNumCols (NumCols) ;
for (int 1 = 0; 1 < NumCols; i++)
horizontalHeader () ->setLabel (i, QChar(’'A’ + 1i));
setCurrentCell (0, 0);

0
0

}

The clear () functionis called from the Spreadsheet constructor to initialize the
spreadsheet. It is also called from MainWindow: :newFile().

We resize the spreadsheet down to 0 x 0, effectively clearing the whole
spreadsheet, and resize it again to NumCols X NumRows (26 x 999). We change the
column labels to “A”, “B”, ..., “Z” (the default is “1”, “27, ..., “26”) and move the
cell cursor to cell Al.

horizontalHeader()

viewport()

verticalHeader()
verticalScrollBar()

horizontalScrollBar()

Figure 4.2. QTable’s constituent widgets

A grableis composed of many child widgets. It has a horizontal QHeader at the
top, a vertical QHeader on the left, a 9QScrollBar on the right, and a QScrollBar
at the bottom. The area in the middle is occupied by a special widget called
the viewport, on which Qrable draws the cells. The different child widgets
are accessible through functions in QTable and its base class, QScrollview.
For example, in clear(), we access the table’s top QHeader through Qrable::
horizontalHeader().

74 4. Implementing Application Functionality

Storing Data as Items ‘

In the Spreadsheet application, every non-empty cell is stored in memory
as an individual QTableltem object. This pattern of storing data as items
is not specific to QTable; Qt’s QIconView, QListBox, and QListView classes also
operate on items (QIconViewItems, QListBoxItems, and QListViewItems).

Qt’s item classes can be used out of the box as data holders. For example,
a QrableTltem already stores a few attributes, including a string, a pixmap,
and a pointer back to the grable. By subclassing the item class, we can store
additional data and reimplement virtual functions to use that data.

Many toolkits provide a void pointer in their item classes to store custom
data. Qt doesn’t burden every item with a pointer that may not be used,;
instead, it gives programmers the freedom to subclass the item classes and
to store the data there, possibly as a pointer to another data structure. If a
void pointer is required, it can be trivially achieved by subclassing an item
class and adding a void pointer member variable.

With QTable, it is possible to bypass the item mechanism by reimplementing
low-level functions such as paintCell () and clearcCell (). If the data to dis-
play in a QTable is already available in memory in another data structure,
this approach can be used to avoid data duplication. For details, see the @¢
Quarterly article “A Model/View Table for Large Datasets”, available online
at http://doc.trolltech.com/qq/qq07-big-tables.html.

Qt 4 is expected to be more flexible than Qt 3 for storing data. In addition
to supporting items, Qt 4 will probably offer a single unified item type
usable by all item views, and the item views will not take ownership of the
items they display, making it possible to display the same items in multiple
views simultaneously.

QScrollview is the natural base class for widgets that can present lots of data.
It provides a scrollable viewport and two scroll bars, which can be turned on
and off. It is covered in Chapter 6.

Cell *Spreadsheet::cell(int row, int col) const

{

return (Cell *)item(row, col);

}

The cell() private function returns the cell object for a given row and column.
It is almost the same as QTable::item(), except that it returns a cell pointer
instead of a QTableItem pointer.

QString Spreadsheet::formula(int row, int col) const
{
Cell *c = cell(row, col);
if (c)
return c->formula();
else

Subclassing QTable 75

return "";

}

The formula() private function returns the formula for a given cell. If cell()
returns a null pointer, the cell is empty, so we return an empty string.

void Spreadsheet::setFormula(int row, int col,
const QString &formula)
{
Cell *c = cell(row, col);
if (c) {
c->setFormula (formula) ;
updateCell (row, col);
} else {
setItem(row, col, new Cell(this, formula));
}
}

The setFormula() private function sets the formula for a given cell. If the
cell already has a cell object, we reuse it and call updatecell() to tell QTable
to repaint the cell if it’s shown on screen. Otherwise, we create a new Cell
object and call QTable: :setItem() toinsert it into the table and repaint the cell.
We don’t need to worry about deleting the cell object later on; Qrable takes
ownership of the cell and will delete it automatically at the right time.

QString Spreadsheet::currentLocation() const
{
return QChar(’A’ + currentColumn())
+ QString::number (currentRow() + 1);

}

The currentLocation() function returns the current cell’s location in the usual
spreadsheet format of column letter followed by row number. MainWindow: :
updateCellIndicators () uses it to show the location in the status bar.

QString Spreadsheet::currentFormula() const
{
return formula(currentRow(), currentColumn());

}

The currentFormula() function returns the current cell’s formula. It is called
from MainWindow: :updateCellIndicators().

QWidget *Spreadsheet::createEditor(int row, int col,
bool initFromCell) const

{

QLineEdit *1lineEdit = new QLineEdit (viewport());

lineEdit->setFrame(false);

if (initFromCell)

lineEdit->setText (formula(row, col));
return lineEdit;

}

The createEditor() function is reimplemented from QTable. It is called when
the user starts editing a cell—either by clicking the cell, pressing F2, or simply
starting to type. Its role is to create an editor widget to be shown on top of

76 4. Implementing Application Functionality

the cell. If the user clicked the cell or pressed F2 to edit the cell, initFromCell
is true and the editor must start with the current cell’s content. If the user
simply started typing, the cell’s previous content is ignored.

The default behavior of this function is to create a QLineEdit and initialize
it with the cell’s text if initFromCell is true. We reimplement the function to
show the cell’s formula instead of the cell’s text.

We create the QLineEdit as a child of the Qrable’s viewport. QTable takes care
of resizing the QLineEdit to match the cell’s size and of positioning it over the
cell that is to be edited. QTable also takes care of deleting the QLineEdit when
it is no longer needed.

= [

Cell QLineEdit

Figure 4.3. Editing a cell by superimposing a QLineEdit

In many cases, the formula and the text are the same; for example, the
formula “Hello” evaluates to the string “Hello”, so if the user types “Hello”
into a cell and presses Enter, that cell will show the text “Hello”. But there are
some exceptions:

¢ If the formula is a number, it is interpreted as such. For example, the
formula “1.50” evaluates to the double value 1.5, which is rendered as a
right-aligned “1.5” in the spreadsheet.

e If the formula starts with a single quote, the rest of the formula is
interpreted as text. For example, the formula “’12345” evaluates to the
string “12345”.

¢ If the formula starts with an equals sign (‘="), the formula is interpreted
as an arithmetic formula. For example, if cell Al contains “12” and cell
A2 contains “6”, the formula “=A1+A2” evaluates to 18.

The task of converting a formula into a value is performed by the cell class.
For the moment, the important thing to bear in mind is that the text shown in
the cell is the result of evaluating the formula, not the formula itself.

void Spreadsheet::endEdit(int row, int col, bool accepted,
bool wasReplacing)
{
QLineEdit *lineEdit = (QLineEdit *)cellWidget(row, col);
if (!lineEdit)
return;
QString oldFormula = formula(row, col);
QString newFormula = lineEdit->text();

QTable::endEdit (row, col, false, wasReplacing);

if (accepted && newFormula != oldFormula) {
setFormula(row, col, newFormula);

Subclassing QTable 77

somethingChanged() ;

}

The endkdit() function is reimplemented from QTable. It is called when the
user has finished editing a cell, either by clicking elsewhere in the spreadsheet
(which confirms the edit), by pressing Enter (which also confirms the edit), or by
pressing Esc (which rejects the edit). The function’s purpose is to transfer the
editor’s content back into the cell object if the edit is confirmed.

The editor is available from QTable::cellWidget (). We can safely cast it to a
QLineEdit since the widget we create in createEditor() is always a QLineEdit.

[=

QLineEdit Cell

Figure 4.4. Returning a QLineEdit’s content to a cell

In the middle of the function, we call QTable’s implementation of endedit (),
because QTable needs to know when editing has finished. We pass false as
third argument to endedit () to prevent it from modifying the table item, since
we want to create or modify it ourselves. If the new formula is different from
the old one, we call setFormula() to modify the cell object and call something-
Changed().

void Spreadsheet::somethingChanged()
{
if (autoRecalc)
recalculate();
emit modified();
}

The somethingChanged() private function recalculates the whole spreadsheet if
Auto-recalculate is enabled and emits the modified() signal.

Loading and Saving

We will now implement the loading and saving of Spreadsheet files using
a custom binary format. We will do this using grile and QDataStream, which
together provide platform-independent binary I/0.

We will start with writing a Spreadsheet file:

bool Spreadsheet::writeFile(const QString &fileName)
{
QFile file(fileName);
if (!file.open(IO_WriteOnly)) {
QMessageBox::warning(this, tr("Spreadsheet"),
tr("Cannot write file %1:\n%2.")
.arg(file.name()
.arg(file.errorString()));
return false;

78 4. Implementing Application Functionality

}

QDataStream out (&file);
out.setVersion(5);

out << (Q_UINT32)MagicNumber;

QApplication::setOverrideCursor (waitCursor);
for (int row = 0; row < NumRows; ++row) {
for (int col = 0; col < NumCols; ++col) {
QString str = formula(row, col);
if (!str.isEmpty())
out << (Q_UINT16)row << (Q _UINTI16)col << str;
}
}
QApplication::restoreOverrideCursor();
return true;

}

The writeFile() functionis called from MainWindow: : saveFile() to write the file
to disk. It returns true on success, false on error.

We create a QFile object with the given file name and call open() to open the
file for writing. We also create a QDataStream object that operates on the gFile
and use it to write out the data. Just before we write the data, we change
the application’s cursor to the standard wait cursor (usually an hourglass)
and restore the normal cursor once all the data is written. At the end of the
function, the file is automatically closed by QFile’s destructor.

QDataStream supports basic C++ types as well as many of Qt’s types. The
syntax is modeled after the standard <iostream> classes. For example,

out << x << y << z;

writes the variables x, vy, and z to a stream, and

in >> x >> y >> z;
reads them from a stream.

Because the C++ basic types char, short, int, long, and long long may have
different sizes on different platforms, it is safest to cast these values to one
of Q_INT8, Q_UINTS, Q_INT16, Q_UINT16, Q_INT32, Q_UINT32, Q_INT64, and Q_UINT64,
which are guaranteed to be of the size they advertise (in bits).

QDataStreamis very versatile. It can be used on a QFile, but also on a QBuffer,
a QSocket, or a QSocketDevice. Similarly, QFile can be used with a QTextStream
instead of QDataStream, or even raw. Chapter 10 explains these classes
in depth.

The Spreadsheet application’s file format is fairly simple. A Spreadsheet file
starts with a 32-bit number that identifies the file format (MagicNumber, defined
as 0x7F51C882 in spreadsheet.h). Then come a series of blocks, each of which
contains a single cell’s row, column, and formula. To save space, we don’t write
out empty cells.

Loading and Saving 79

0x7F51C882| || 122|| 4||Hg|| || 122|| 5| Mercury|

Figure 4.5. The Spreadsheet file format

The precise binary representation of the data types is determined by gbata-
Stream. For example,a Q_UINT16 is represented as two bytes in big-endian order,
and a QString as the string’s length followed by the Unicode characters.

The binary representation of Qt types has evolved quite a lot since Qt 1.0. It
is likely to continue evolving in future Qt releases to keep pace with the evo-
lution of existing types and to allow for new Qt types. By default, gpataStream
uses the most recent version of the binary format (version 5 in Qt 3.2), but it
can be set to read older versions. To avoid any compatibility problems if the
application is recompiled later using a newer Qt release, we tell gdataStreamto
use version 5 irrespective of the version of Qt we are compiling against.

bool Spreadsheet::readFile(const QString &fileName)
{
QFile file(fileName);
if (!file.open(IO_ReadOnly)) {
QMessageBox::warning (this, tr("Spreadsheet"),
tr("Cannot read file %1:\n%2.")
.arg(file.name()
.arg(file.errorString()));
return false;

}

QDataStream in(&file);
in.setVersion(5);

Q_UINT32 magic;
in >> magic;
if (magic != MagicNumber) {
QMessageBox: :warning(this, tr("Spreadsheet"),
tr("The file is not a "
"Spreadsheet file."));
return false;

}
clear();

Q UINT16 row;
Q _UINT16 col;
QString str;

QApplication::setOverrideCursor(waitCursor) ;
while (!in.atEnd()) {

in >> row >> col >> str;

setFormula(row, col, str);
}
QApplication::restoreOverrideCursor();
return true;

80 4. Implementing Application Functionality

The readfFile() function is very similar to writeFile(). We use QFile to read
in the file, but this time using the 10_Readonly flag rather than 10_writeonly.
Then we set the QpataStream version to 5. The format for reading must always
be the same as for writing.

If the file has the correct magic number at the beginning, we call clear() to
blank out all the cells in the spreadsheet and we read in the cell data. The call
to clear () is necessary to blank out the cells that are not specified in the file.

Implementing the Edit Menu

We are now ready to implement the slots that correspond to the application’s
Edit menu.

void Spreadsheet::cut()

{
copy () ;
del();

}

The cut () slot corresponds to Edit|Cut. The implementation is simple since Cut
is the same as Copy followed by Delete.

| Exit
3@ Cut Ctrl+3
CEopy Ctrl+C
ﬁnﬁ Paste Cirl+is
ﬁiﬁjgpmm Dl
Select 9 Row
Qo) Fnd... Ctri+F Column

[cotocel. Fs &) G

Figure 4.6. The Spreadsheet application’s Edit menu

void Spreadsheet::copy()

{
QTableSelection sel = selection();
QString str;

for (int 1 = 0; 1 < sel.numRows(); ++i) {
if (1 > 0)
str += "\n";
for (int j = 0; j < sel.numCols(); ++j) {
if (3 > 0)
str += "\t";

str += formula(sel.topRow() + i, sel.leftCol() + j);

Implementing the Edit Menu 81

QApplication::clipboard()->setText(str);
}

The copy () slot corresponds to Edit|Copy. It iterates over the current selection.
Each selected cell’s formula is added to a gstring, with rows separated by
newline characters and columns separated by tab characters.

"Red\t Green\t Blue \n Cyan\t Magenta \t Yellow"

Figure 4.7. Copying a selection onto the clipboard

The system clipboard is available in Qt through the gapplication::clipboard()
static function. By calling QClipboard: :setText (), we make the text available
on the clipboard, both to this application and to other applications that support
plain text. Our format with tab and newline characters as separator is under-
stood by a variety of applications, including Microsoft Excel.

QTableSelection Spreadsheet::selection()
{
if (QTable::selection(0).isEmpty())
return QTableSelection(currentRow(), currentColumn(),
currentRow(), currentColumn());
return QTable::selection(0);

}

The selection() private function returns the current selection. It depends on
QTable::selection(), which returns a selection by number. Since we set the
selection mode to Single, there is only one selection, numbered 0. But it’s also
possible that there is no selection at all. This is because QTable doesn’t treat
the current cell as a selection in its own right. This behavior is reasonable, but
slightly inconvenient here, so we implement a selection() function that either
returns the current selection or, if there isn’t one, the current cell.

void Spreadsheet::paste()

{
QTableSelection sel = selection();
QString str = QApplication::clipboard()->text();
QStringList rows = QStringList::split("\n", str, true);
int numRows rows.size();
int numCols rows.first().contains("\t") + 1;

if (sel.numRows() * sel.numCols() != 1
&& (sel.numRows () != numRows
|| sel.numCols() != numCols)) {

QMessageBox::information(this, tr("Spreadsheet"),
tr("The information cannot be pasted because the "

82 4. Implementing Application Functionality

"copy and paste areas aren’t the same size."));
return;

}

for (int i = 0; i < numRows; ++i) {
QStringList cols = QStringList::split("\t", rows[i], true);
for (int j = 0; j < numCols; ++j) {
int row = sel.topRow() + 1i;
int col = gel.leftCol() + j;
if (row < NumRows && col < NumCols)
setFormula(row, col, cols([j]);
}
}
somethingChanged() ;

}

The paste() slot corresponds to Edit|Paste. We fetch the text on the clipboard
and call the static function QStringList::split() to break the string into a
QStringList. Each row becomes one string in the QStringList.

Next, we determine the dimension of the copy area. The number of rowsis the
number of stringsin the QStringList;the number of columns is the number of
tab characters in the first row, plus 1.

If only one cell is selected, we use that cell as the top-left corner of the paste
area. Otherwise, we use the current selection as the paste area.

To perform the paste, we iterate over the rows and split each of them into cells
by using QStringList::split() again, but this time using tab as the separator.
Figure 4.8 illustrates the steps.

"Red\t Green\t Blue\n Cyan\t Magenta \t Yellow"
D
["Red\t Green\t Blue", "Cyan\t Magenta\t Yellow"]
gt
[IlRedll, "Gl'een", llBIuell]
["Cyan", "Magenta", "Yellow"]

.
H I J
27 | Red Green Blue
28 | Cyan Magenta |Wellow

Figure 4.8. Pasting clipboard text into the spreadsheet

void Spreadsheet::del()
{
QTableSelection sel = selection();
for (int 1 = 0; 1 < sel.numRows(); ++i) {
for (int j = 0; j < sel.numCols(); ++3)
delete cell(sel.topRow() + 1, sel.leftCol() + j);

Implementing the Edit Menu 83

}

clearSelection();

}

The del() slot corresponds to Edit|Delete. It is sufficient to use delete on each
of the cell objects in the selection to clear the cells. The QTable notices when
its QTableltens are deleted and automatically repaints itself. If we call cell ()
with the location of a deleted cell, it will return a null pointer.

void Spreadsheet::selectRow()
{
clearSelection();
QTable::selectRow(currentRow()) ;
}

void Spreadsheet::selectColumn()

{
clearSelection();
QTable::selectColumn(currentColumn()) ;

}

void Spreadsheet::selectAll()
{

clearSelection();

selectCells (0, 0, NumRows - 1, NumCols - 1);
}

The selectRow(), selectColumn(), and selectAll () functions correspond to the
Edit|Select|Row, Edit|Select|Column, and Edit|Select|All menu options. The imple-
mentation relies on QTable’s selectRow(), selectColumn(), and selectCells()
functions.

void Spreadsheet::findNext(const QString &str, bool caseSensitive)
{

int row = currentRow();

int col = currentColumn() + 1;

while (row < NumRows) {
while (col < NumCols) {
if (text(row, col).contains(str, caseSensitive)) {
clearSelection() ;
setCurrentCell (row, col);
setActiveWindow() ;
return;
}
++col;
}
col = 0;
++row;
}
gApp->beep() ;
}

The findNext () slot iterates through the cells starting from the cell to the right
of the cursor and moving right until the last column is reached, then continues
from the first column in the row below, and so on until the text is found or

84 4. Implementing Application Functionality

until the very last cell is reached. For example, if the current cell is cell C27,
we search D27, E27, ...,7Z27,then A28, B28, C28, ...,7Z28, and so on until Z999.
If we find a match, we clear the current selection, we move the cell cursor to
the cell that matched, and we make the window that contains the Spreadsheet
active. If no match is found, we make the application beep to indicate that the
search finished unsuccessfully.

void Spreadsheet::findPrev(const QString &str, bool caseSensitive)
{

int row = currentRow();

int col = currentColumn() - 1;

while (row >= 0) {
while (col >= 0) {
if (text(row, col).contains(str, caseSensitive)) {
clearSelection();
setCurrentCell (row, col);
setActiveWindow() ;
return;
}
--col;
}
col = NumCols - 1;
-=TOW;
}
gApp->beep () ;
}

The findprev() slot is similar to findNext (), except that it iterates backward
and stops at cell Al.

Implementing the Other Menus

We will now implement the slots for the Tools and Options menus.

| Tocls | Dptions
Fecaloulate FO [v Show Grid
Sort... ’T Auto-recalculate

Figure 4.9. The Spreadsheet application’s Tools and Options menus

void Spreadsheet::recalculate()

{

int row;

for (row = 0; row < NumRows; ++row) {
for (int col = 0; col < NumCols; ++col) {
if (cell(row, col)
cell(row, col)->setDirty();
}
}

for (row = 0; row < NumRows; ++row) {

Implementing the Other Menus 85

for (int col = 0; col < NumCols; ++col) {
if (cell(row, col)
updateCell (row, col);

}

The recalculate() slot corresponds to Tools|Recalculate. It is also called auto-
matically by Spreadsheet when necessary.

We iterate over all the cells and call setdirty() on every cell to mark each
one as requiring recalculation. The next time QTable calls text () on a Cell to
obtain the value to show in the spreadsheet, the value will be recalculated.

Then we call updateCell() on all the cells to repaint the whole spreadsheet.
The repaint code in QTable then calls text() on each visible cell to obtain
the value to display. Because we called setDirty() on every cell, the calls to
text () will use a freshly calculated value. The calculation is performed by the
Cell class.

void Spreadsheet::setAutoRecalculate(bool on)
{
autoRecalc = on;
if (autoRecalc)
recalculate() ;

}

The setAutoRecalculate() slot corresponds to Options|Auto-recalculate. If the fea-
ture is turned on, we recalculate the whole spreadsheet immediately to make
sure that it’s up to date. Afterward, recalculate() iscalled automatically from
somethingChanged().

We don’t need to implement anything for Options|Show Grid because QTable
already provides a setShowGrid(bool) slot. All that remains is Spreadsheet::
sort (), which we called from MainWindow: : sort():

void Spreadsheet::sort(const SpreadsheetCompare &compare)
{

vector<QStringList> rows;

QTableSelection sel = selection();

int i;

for (1 = 0; 1 < sel.numRows(); ++1i) {
QStringList row;
for (int j = 0; j < sel.numCols(); ++3)

row.push_back(formula(sel.topRow() + 1,
sel.leftCol() + 3));
rows.push_back (row) ;

}

stable_sort(rows.begin(), rows.end(), compare);
for (1 = 0; i < sel.numRows(); ++i) {
for (int j = 0; j < sel.numCols(); ++j)

setFormula(sel.topRow() + i, sel.leftCol() + j,
rows [1] [31);

86 4. Implementing Application Functionality

}

clearSelection();
somethingChanged () ;
}

Sorting operates on the current selection and reorders the rows according to
the sort keys and sort orders stored in the compare object. We represent each
row of data with a 0StringList and store the selection as a vector of rows.
The vector<T> class is a standard C++ class; it is explained in Chapter 11
(Container Classes). For simplicity, we sort by formula rather than by value.

index value
0 ["Edsger", "Dijkstra", "1930-05-11"]
["Tony","Hoare", "1934-01-11"]
["Niklaus", "Wirth", "1934-02-15"]
["Donald", "Knuth", "1938-01-10"]

Wl N[=

Figure 4.10. Storing the selection as a vector of rows

We call the standard C++ stable_sort() function on the rows to perform the
actual sorting. The stable_sort() function accepts a begin iterator, an end
iterator, and a comparison function. The comparison function is a function
that takes two arguments (two QStringLists) and that returns true if the first
argument is “less than” the second argument, false otherwise. The compare
object we pass as the comparison function isn’t really a function, but it can be
used as one, as we will see shortly.

index value [| o | E |
0 ["Donald", "Knuth", "1938-01-10"] 2 |Donad |Knuth |[1938-01-10
1 ["Edsger", "Dijkstra", "1930-05-11"] ’ 3 |Edsger |Dikstra |1930-05-11
2 ["Niklaus", "Wirth", "1934-02-15"] 4 |Miklaus |Wirth 1934-02-15
3 ["Tony","Hoare", "1934-01-11"] 5 |Tary Hoare |1934-01-11

Figure 4.11. Putting the data back into the table after sorting

After performing the stable_sort(), we move the data back into the table,
clear the selection, and call somethingChanged().

In spreadsheet.h, the SpreadsheetCompare class was defined like this:

class SpreadsheetCompare
{
public:
bool operator() (const QStringList &rowl,
const QStringList &row2) const;

enum { NumKeys = 3 };
int keys[NumKeys];

Implementing the Other Menus 87

bool ascending[NumKeys] ;

}i

The spreadsheetCompare class is special because it implements a () operator.
This allows us to use the class as if it were a function. Such classes are called
functors. To understand how functors work, we will start with a simple ex-
ample:

class Square
{
public:
int operator() (int x) const { return x * x; }

}i

The square class provides one function, operator() (int), that returns the
square of its parameter. By naming the function operator () (int) rather than,
say, compute (int), we gain the capability of using an object of type Square as if
it were a function:

Square square;
int y = square(5);

Now let’s see an example involving SpreadsheetCompare:

QStringList rowl, row2;
SpreadsheetCompare compare;

if (compare(rowl, row2)) {
// rowl 1s less than row2

}

The compare object can be used just as if it had been a plain compare () function.
Additionally, it can access all the sort keys and sort orders, which it stores as
member variables.

An alternative to this scheme would have been to store the sort keys and
sort orders in global variables and use a plain compare() function. However,
communicating through global variables is inelegant and can lead to subtle
bugs. Functors are a more powerful idiom for interfacing with template
functions such as stable_sort().

Here is the implementation of the function that is used to compare two
spreadsheet rows:

bool SpreadsheetCompare::operator() (const QStringList &rowl,
const QStringList &row2) const
{
for (int i = 0; 1 < NumKeys; ++i) {
int column = keys[i];
if (column != -1) {
if (rowl[column] != row2[column]) {
if (ascending[i])
return rowl[column] < row2[column];
else
return rowl[column] > row2[column];

88 4. Implementing Application Functionality

}
}
return false;

}

It returns true if the first row is less than the second row; otherwise, it returns
false. The standard stable_sort () function uses the result of this function to
perform the sort.

The spreadsheetCompare object’s keys and ascending arrays are populated in the
MainWindow: :sort () function (shown in Chapter 2). Each key holds a column
index, or -1 (“None”).

We compare the corresponding cell entries in the two rows for each key in
order. As soon as we find a difference, we return an appropriate true or false
value. If all the comparisons turn out to be equal, we return false. The stable_
sort () function uses the order before the sort to resolve tie situations;if rowl
preceded row2 originally and neither compares as “less than” the other, rowl
will still precede row2 in the result. This is what distinguishes std::stable_
sort () from its more famous (but less stable) cousin std: :sort ().

We have now completed the spreadsheet class. In the next section, we will
review the cell class. This class is used to hold cell formulas and provides a
reimplementation of the text () function that Spreadsheet calls to display the
result of calculating a cell’s formula.

Subclassing QTableltem

The cell class inherits from QrableItem. The class is designed to work well
with Spreadsheet, but it has no specific dependencies on that class and could
in theory be used in any QTable.

Here’s the header file:

#ifndef CELL_H
#define CELL_H

#include <gtable.h>
#include <gvariant.h>

class Cell : public QTableltem
{
public:
Cell (QTable *table, const QString &formula);

void setFormula(const QString &formula);
QString formula() const;

void setDirty();

QString text() const;

int alignment() const;

private:
QVariant value() const;

Subclassing QTableltem 89

QVariant evalExpression(const QString &str, int &pos) const;
QVariant evalTerm(const QString &str, int &pos) const;
QVariant evalFactor(const QString &str, int &pos) const;

QString formulaStr;
mutable QVariant cachedvalue;
mutable bool cacheIsDirty;

i
#endif
The cell class extends QTableItem by adding three private variables:

® formulaStr stores the cell’s formula as a QString.
® cachedvalue caches the cell’s value as a Qvariant.

® cacheIsDirtyis true if the cached value isn’t up to date.

The gQvariant type can hold values of many C++ and Qt types. We use it
because some cells have a double value, while others have a Qstring value.

The cachedvalue and cacheIsDirty variables are declared with the C++ mutable
keyword. This allows us to modify these variables in const functions. Alterna-
tively, we could recalculate the value each time text () is called, but that would
be needlessly inefficient.

Notice that there is no Q_0BJECT macro in the class definition. cell is a plain
C++ class, with no signals or slots. In fact, because QTableItem doesn’t inherit
from Qobject, we cannot have signals and slots in Cell as it stands. Qt’s
item classes don’t inherit from Qobject to keep their overhead to the barest
minimum. If signals and slots are needed, they can be implemented in the
widget that contains the items or, exceptionally, using multiple inheritance
with Qobject.

Here’s the start of cell.cpp:

#include <glineedit.h>
#include <qgregexp.h>

#include "cell.h"

Cell::Cell(QTable *table, const QString &formula)
: QTablelItem(table, OnTyping)

{
setFormula (formula) ;

}

The constructor accepts a pointer to a QTable and a formula. The pointer is
passed on to the QTableItem constructor and is accessible afterward as QTable-
Item::table(). The second argument to the base class constructor, onTyping,
means that an editor pops up when the user starts typing in the current cell.

void Cell::setFormula(const QString &formula)
{

formulaStr = formula;

90 4. Implementing Application Functionality

cachelsDirty = true;

}

The setFormula() function sets the cell’s formula. It also sets the cacheIsDirty
flag to true, meaning that cachedvalue must be recalculated before a valid val-
ue can be returned. It is called from the cell constructor and from Spread-
sheet::setFormula().

QString Cell::formula() const
{
return formulaStr;

}
The formula() function is called from Spreadsheet::formula().

void Cell::setDirty()
{
cacheIsDirty = true;

}

The setdirty() function is called to force a recalculation of the cell’s value. It
simply sets cacheIsDirty to true. The recalculation isn’t performed until it is
really necessary.

QString Cell::text() const
{
if (value().isValid()
return value().toString();
else
return "####";
}

The text () function is reimplemented from QTableItem. It returns the text that
should be shown in the spreadsheet. It relies on value() to compute the cell’s
value. If the value is invalid (presumably because the formula is wrong), we
return “####”.

The value() function used by text () returns a Qvariant. A Qvariant can store
values of different types, such as double and QString, and provides functions to
convert the variant to other types. For example, calling toString() on a vari-
ant that holds a double value produces a string representation of the double. A
Qvariant constructed using the default constructor is an “invalid” variant.

int Cell::alignment() const
{
if (value().type() == QVariant::String)
return AlignLeft | AlignVCenter;
else
return AlignRight | AlignVCenter;
}

The alignment () function is reimplemented from QTableltem. It returns the
alignment for the cell’s text. We have chosen to left-align string values and to
right-align numeric values. We vertically center all values.

Subclassing QTableltem 91

const QVariant Invalid;

QVariant Cell::value() const
{
if (cachelIsDirty) {
cachelIsDirty = false;

if (formulaStr.startsWith("'")) {
cachedvalue = formulaStr.mid(1);
} else if (formulaStr.startsWith("=")) {

cachedvalue = Invalid;

QString expr = formulaStr.mid(1);

expr.replace(" ", "");

int pos = 0;

cachedvValue = evalExpression(expr, pos);

if (pos < (int)expr.length())
cachedvalue = Invalid;

} else {
bool ok;
double d = formulaStr.toDouble(&ok) ;
if (ok)
cachedvalue = d;
else

cachedvalue = formulaStr;
}
}
return cachedValue;

}

The value() private function returns the cell’s value. If cacheIsDirtyis true,
we need to recalculate the value.

If the formula starts with a single quote (for example, “’12345”), the value is
the string from position 1 to the end. (The single quote occupies position 0.)

If the formula starts with ‘=", we take the string from position 1 and delete any
spaces it may contain. Then we call evalExpression() to compute the value
of the expression. The pos argument is passed by reference; it indicates the
position of the character where parsing should begin. After the call to eval-
Expression(), pos is equal to the length of the expression that was successfully
parsed. If the parse failed before the end, we set cachedvalue to be Invalid.

If the formula doesn’t begin with a single quote or an equals sign (‘=’), we
attempt to convert it to a floating point value using toDouble(). If the con-
version works, we set cachedvalue to be the resulting number; otherwise, we
set cachedvalue to be the formula string. For example, a formula of “1.50”
causes toDouble() to set ok to true and return 1.5, while a formula of “World
Population” causes toDouble() to set ok to false and return 0.0.

The value() function is a const function. We had to declare cachedvalue and
cacheIsvalid as mutable variables so that the compiler will allow us to modify
them in const functions. It might be tempting to make value() non-const
and remove the mutable keywords, but that would not compile because we call
value() from text (), a const function. In C++, caching and mutable usually go
hand in hand.

92 4. Implementing Application Functionality

We have now completed the Spreadsheet application, apart from parsing for-
mulas. The rest of this section covers evalExpression() and the two helper
functions evalTerm() and evalFactor(). The code is a bit complicated, but it is
included here to make the application complete. Since the code is not related
to GUI programming, you can safely skip it and continue reading from Chap-
ter 5.

The evalExpression() function returns the value of a spreadsheet expression.
An expression is defined as one or more terms separated by ‘+’ or -’ operators;
for example, “2+xC5+D6” is an expression with “2+C5” as its first term and “D6”
as its second term. The terms themselves are defined as one or more factors
separated by ¥ or /’ operators; for example, “2+C5” is a term with “2” as its first
factor and “C5” as its second factor. Finally, a factor can be a number (“2”), a
cell location (“C5”), or an expression in parentheses, optionally preceded by a
unary minus. By breaking down expressions into terms and terms into fac-
tors, we ensure that the operators are applied with the correct precedence.

Expression Term Factor
- Number

Cell location
©)

Figure 4.12. Syntax diagram for spreadsheet expressions

The syntax of spreadsheet expressionsis defined in Figure 4.12. For each sym-
bol in the grammar (Expression, Term, and Factor), there is a corresponding
Cell member function that parses it and whose structure closely follows the
grammar. Parsers written this way are called recursive-descent parsers.

Let’s start with evalExpression(), the function that parses an Expression:

QVariant Cell::evalExpression(const QString &str, int &pos) const
{
QvVariant result = evalTerm(str, pos);
while (pos < (int)str.length()) {
QChar op = strlpos];

if (op != "+' && op != '-")
return result;
++pos;

QVariant term = evalTerm(str, pos);

if (result.type() == QVariant::Double
&& term.type() == QVariant::Double) {
if (op == "+')
result = result.toDouble() + term.toDouble();
else
result = result.toDouble() - term.toDouble();
} else {

result = Invalid;

Subclassing QTableltem 93

}
}

return result;

}

First,we call evalTerm() to get the value of the first term. If the following char-
acter is ‘+’ or ‘-’, we continue by calling evalTerm() a second time; otherwise,
the expression consists of a single term, and we return its value as the value
of the whole expression. After we have the value of the first two terms, we
compute the result of the operation, depending on the operator. If both terms
evaluated to a double, we compute the result as a double; otherwise, we set the
result to be Invalid.

We continue like this until there are no more terms. This works correctly
because addition and subtraction are left-associative; that is, “1-2-3” means
“(1-2)-3”, not “1-(2-3)”.

Qvariant Cell::evalTerm(const QString &str, int &pos) const
{
QVariant result = evalFactor(str, pos);
while (pos < (int)str.length()) {
QChar op = strlpos];

if (op != "*" && op !="'/")
return result;
++pos;

QVariant factor = evalFactor(str, pos);
if (result.type() == QVariant::Double

&& factor.type() == QVariant::Double) {
if (op == "*) {
result = result.toDouble() * factor.toDouble();
} else {
if (factor.toDouble() == 0.0)
result = Invalid;
else

result = result.toDouble() / factor.toDouble();
}
} else {
result = Invalid;
}
}
return result;

}

The evalTerm() function is very similar to evalExpression(), except that it
deals with multiplication and division. The only subtlety in evalTerm() is
that we must avoid division by zero. While it is generally inadvisable to test
floating point values for equality because of rounding errors, it is safe to do so
to prevent division by zero.

QVariant Cell::evalFactor(const QString &str, int &pos) const
{

QVariant result;

bool negative = false;

94 4. Implementing Application Functionality

if (str([pos] == "-") {
negative = true;
++pos;

}

if (strlpos] == ' (') {
++pos;

result = evalExpression(str, pos);
if (str([pos] != ")")
result = Invalid;
++pos;
} else {
QRegExp regExp("[A-Za-z] [1-9] [0-9] {0,2}");
QString token;

while (str[pos].isLetterOrNumber() || strlpos] == '.") {
token += str[pos];
++pos;

}

if (regExp.exactMatch(token)) {

int col = token[0].upper().unicode() - 'A’;
int row = token.mid(1).toInt() - 1;
Cell *c = (Cell *)table()->item(row, col);
if (c)
result = c->value();
else
result = 0.0;
} else {
bool ok;
result = token.toDouble(&0k) ;
if (!ok)

result = Invalid;

}

if (negative) {
if (result.type() == QVariant::Double)
result = -result.toDouble();
else
result = Invalid;

}

return result;

}

The evalFactor() function is a bit more complicated than evalExpression()
and evalTerm(). We start by noting whether the factor is negated. We then see
if it begins with an open parenthesis. If it does, we evaluate the contents of
the parentheses as an expression by calling evalExpression(). This is where
recursion occurs in the parser; evalExpression() calls evalTerm(), which calls
evalFactor (), which calls evalExpression() again.

If the factor isn’t a nested expression, we extract the next token, which may
be a cell location or a number. If the token matches the QregExp, we take it to
be a cell reference and we call value() on the cell at the given location. The

Subclassing QTableltem 95

cell could be anywhere in the spreadsheet, and it could have dependencies
on other cells. The dependencies are not a problem; they will simply trigger
more value() calls and (for “dirty” cells) more parsing until all the dependent
cell values are calculated. If the token isn’t a cell location, we take it to be
a number.

What happens if cell Al contains the formula “=A1”? Or if cell Al contains
“=A2” and cell A2 contains “=A1”? Although we have not written any special
code to detect circular dependencies, the parser handles these cases gracefully
by returning an invalid gvariant. This works because we set cacheIsDirty to
false and cachedvalue to Invalidin value() before we call evalExpression().If
evalExpression() recursively calls value() on the same cell, it returns Invalid
immediately, and the whole expression then evaluates to Invalid.

We have now completed the formula parser. It would be straightforward to
extend it to handle predefined spreadsheet functions, like “sum()” and “avg()”,
by extending the grammatical definition of Factor. Another easy extension
is to implement the ‘+’ operator with string operands (as concatenation); this
requires no changes to the grammar.

* Customizing Qt Widgets
* Subclassing QWidget

* [Integrating Custom Widgets
with Qt Designer

* Double Buffering

Creating Custom Widgets

This chapter explains how to create custom widgets using Qt. Custom widgets
can be created by subclassing an existing Qt widget or by subclassing Qwidget
directly. We will demonstrate both approaches, and we will also see how to
integrate a custom widget with Q¢ Designer so that it can be used just like a
built-in Qt widget. We will round off the chapter by presenting a custom wid-
get that uses a powerful technique for eliminating flicker: double buffering.

Customizing Qt Widgets

In some cases, we find that a Qt widget requires more customization than is
possible by setting its properties in @¢ Designer or by calling its functions. A
simple and direct solution is to subclass the relevant widget class and adapt
it to suit our needs.

7F =

Figure 5.1. The HexSpinBox widget

In this section, we will develop a hexadecimal spin box to show how this works.
QSpinBox only supports decimal integers, but by subclassing it’s quite easy to
make it accept and display hexadecimal values.

#ifndef HEXSPINBOX_H
#define HEXSPINBOX_H

#include <gspinbox.h>
class HexSpinBox : public QSpinBox

{

97

98 5. Creating Custom Widgets

public:
HexSpinBox (QWidget *parent, const char *name = 0);

protected:
QString mapValueToText (int value);
int mapTextToValue(bool *o0k);

}i

fendif

The HexSpinBox inherits most of its functionality from 0SpinBox. It provides
a typical constructor and reimplements two virtual functions from QSpinBox.
Since the class doesn’t define its own signals and slots, it doesn’t need the ¢_
OBJECT macro.

#include <gvalidator.h>
#include "hexspinbox.h"

HexSpinBox: :HexSpinBox (QWidget *parent, const char *name)
: QSpinBox(parent, name)

{
QRegExp regExp("[0-9A-Fa-f]+");
setValidator (new QRegExpValidator(regExp, this));
setRange (0, 255);

}

The user can modify a spin box’s current value either by clicking its up and
down arrows or by typing a value into the spin box’s line editor. In the latter
case, we want to restrict the user’s input to legitimate hexadecimal numbers.
To achieve this, we use a QrRegExpvalidator that accepts one or more characters
from the ranges ‘0’ to ‘9’, ‘A’ to ‘F’, and ‘a’ to ‘f’. We also set the default range to
be 0 to 255 (0x00 to OxFF), which is more appropriate for a hexadecimal spin
box than 0SpinBox’s default of 0 to 99.

QString HexSpinBox::mapValueToText (int value)
{
return QString::number(value, 16).upper();

}

The mapvalueToText () function converts an integer value to a string. 0SpinBox
callsit to update the editor part of the spin box when the user presses the spin
box’s up or down arrows. We use the static function QString: :number() with
a second argument of 16 to convert the value to lower-case hexadecimal, and
call QString: :upper() on the result to make it upper-case.

int HexSpinBox::mapTextToValue(bool *ok)
{

return text().toInt(ok, 16);
}

The mapTextTovalue() function performs the reverse conversion, from a string
to an integer value. It is called by QSpinBox when the user types a value into
the editor part of the spin box and presses Enter. We use the QString::toInt()

Customizing Qt Widgets 99

function to attempt to convert the current text (returned by QSpinBox: : text())
to an integer value, again using base 16.

If the conversion is successful, toInt () sets *ok to true; otherwise, it sets it to
false. This behavior happens to be exactly what QSpinBox expects.

We have now finished the hexadecimal spin box. Customizing other Qt wid-
gets follows the same pattern: Pick a suitable Qt widget, subclassit, and reim-
plement some virtual functions to change its behavior. This technique is com-
mon in Qt programming; in fact, we have already used it in Chapter 4 when
we subclassed QTable and reimplemented createEditor() and endEdit ().

Subclassing QWidget

Most custom widgets are simply a combination of existing widgets, whether
they are built-in Qt widgets or other custom widgets such as HexSpinBox.
Custom widgets that are built by composing existing widgets can usually be
developed in @t Designer:

* Create a new form using the “Widget” template.
¢ Add the necessary widgets to the form, then lay them out.

* Set up the signals and slots connections and add any necessary code
(either in a .ui.h file or in a subclass) to provide the desired behavior.

Naturally, this can also be done entirely in code. Whichever approach is taken,
the resulting class inherits directly from gwidget.

If the widget has no signals and slots of its own and doesn’t reimplement
any virtual functions, it is even possible to simply assemble the widget by
aggregating existing widgets without a subclass. That’s the approach we
used in Chapter 1 to create the Age application, with a QHBox, a QSpinBox, and
a gslider. Even so, we could just as easily have subclassed QHBox and created
the QspinBox and QSlider in the subclass’s constructor.

When none of Qt’s widgets are suitable for the task at hand, and when there’s
no way to combine or adapt existing widgets to obtain the desired result, we
can still create the widget we want. This is achieved by subclassing Qwidget
and reimplementing a few event handlers to paint the widget and to respond
to mouse clicks. This approach gives us complete freedom to define and control
both the appearance and the behavior of our widget. Qt’s built-in widgets,
like QLabel, QPushButton, and QTable, are implemented this way. If they didn’t
exist in Qt, it would still be possible to create them ourselves using the public
functions provided by gwidget in a totally platform-independent manner.

To demonstrate how to write a custom widget using this approach, we will
create the IconEditor widget shown in Figure 5.2. The IconEditor is a widget
that could be used in an icon editing program.

Let’s begin by reviewing the header file.

100

5. Creating Custom Widgets

#ifndef ICONEDITOR_H
#define ICONEDITOR_H

#include <gimage.h>
#include <gwidget.h>

class IconEditor : public QWidget

{

Q_OBJECT

Q_PROPERTY (QColor penColor READ penColor WRITE setPenColor)
Q_PROPERTY (QImage iconImage READ iconImage WRITE setIconImage)
Q_PROPERTY (int zoomFactor READ zoomFactor WRITE setZoomFactor)

public:

IconEditor (QWidget *parent = 0, const char *name = 0);

void setPenColor(const QColor &newColor);

QColor penColor() const { return curColor; }

void setZoomFactor(int newZoom) ;

int zoomFactor() const { return zoom; }

void setIconImage(const QImage &newImage);

const QImage &iconlImage() const { return image; }
QSize sizeHint() const;

The IconEditor class uses the Q_PROPERTY () macro to declare three custom prop-
erties: penColor, iconImage, and zoomFactor. Each property has a type, a “read”
function, and a “write” function. For example, the penColor property is of type
Qcolor and can be read and written using the penColor() and setPenColor ()
functions.

Figure 5.2. The IconEditor widget

When we make use of the widget in Q¢ Designer, custom properties appear
in Qt Designer’s property editor below the properties inherited from Qwidget.
Properties may be of any type supported by Qvariant. The Q_0OBJECT macro is
necessary for classes that define properties.

protected:

void mousePressEvent (QMouseEvent *event);
void mouseMoveEvent (QMouseEvent *event);
void paintEvent (QPaintEvent *event);

Subclassing QWidget 101

private:
void drawImagePixel (QPainter *painter, int i, int j);
void setImagePixel (const QPoint &pos, bool opaque);

QColor curColor;
QImage image;
int zoom;

}i
#endif

IconEditor reimplements three protected functions from QWidget and has a few
private functions and variables. The three private variables hold the values
of the three properties.

The implementation file begins with #include directives and the IconEditor’s
constructor:

#include <gpainter.h>
#include "iconeditor.h"

IconEditor::IconEditor (QWidget *parent, const char *name)
: QWidget (parent, name, WStaticContents)
{
setSizePolicy(QSizePolicy: :Minimum, QSizePolicy::Minimum);
curColor = black;
zoom = 8;
image.create(16, 16, 32);
image.fill (gRgba(0, 0, 0, 0));
image.setAlphaBuffer(true);
}

The constructor has some subtle aspects such as the setSizepolicy() call and
the wstaticContents flag. We will discuss them shortly.

The zoom factor is set to 8, meaning that each pixel in the icon will be rendered
as an 8 x 8 square. The pen color is set to black; the black symbol is a prede-
fined value in the 0t class (Q0bject’s base class).

The icon data is stored in the image member variable and can be accessed
through the setIconImage () and iconImage () functions. Anicon editor program
would typically call setIconImage () when the user opens an icon file and icon-
Image () to retrieve the icon when the user wants to save it.

The image variable is of type 0Image. We initialize it to 16 x 16 pixels and 32-bit
depth, clear the image data, and enable the alpha buffer.

The 9Image class stores an image in a hardware-independent fashion. It can be
set to use a 1-bit, 8-bit, or 32-bit depth. An image with 32-bit depth uses 8 bits
for each of the red, green, and blue components of a pixel. The remaining
8 bits store the pixel’s alpha component—that is, its opacity. For example, a
pure red color’s red, green, blue, and alpha components have the values 255, 0,
0, and 255. In Qt, this color can be specified as

QRgb red = gRgba(255, 0, 0, 255);

102 5. Creating Custom Widgets

or as

QRgb red = qRgb(255, 0, 0);

QRgb is simply a typedef for unsigned int, and qRgb() and gRgba() are inline
functions that combine their argumentsinto one 32-bit integer value. Itisalso
possible to write

QRgb red = 0xFFFF0000;

where the first FF corresponds to the alpha component and the second FF to
the red component. In the IconEditor constructor, we fill the QImage with a
transparent color by using 0 as the alpha component.

Qt provides two types for storing colors: QRgb and QColor. While Qrgb is only a
typedef used in QImage to store 32-bit pixel data, QColor is a class with many
useful functions and is widely used in Qt to store colors. In the IconEditor
widget, we only use QrRgb when dealing with the Qimage; we use QColor for
everything else, including the pencolor property.

QSize IconEditor::sizeHint() const
{
QSize size = zoom * image.size();
if (zoom >= 3)
size += QSize(1, 1);
return size;

}

The sizeHint () function is reimplemented from QwWidget and returns the ideal
size of a widget. Here, we take the image size multiplied by the zoom factor,
with one extra pixel in each direction to accommodate a grid if the zoom factor
is 3 or more. (We don’t show a grid if the zoom factor is 2 or 1, because the grid
would hardly leave any room for the icon’s pixels.)

A widget’s size hint is mostly useful in conjunction with layouts. Qt’s layout
managers try as much as possible to respect a widget’s size hint when they lay
out a form’s child widgets. For IconEditor to be a good layout citizen, it must
report a credible size hint.

In addition to the size hint, widgets have a size policy that tells the layout
system whether they like to be stretched and shrunk. By calling setSizePol-
icy () in the constructor with QSizePolicy: :Minimum as horizontal and vertical
policies, we tell any layout manager that is responsible for this widget that the
widget’s size hint is really its minimum size. In other words, the widget can
be stretched if required, but it should never shrink below the size hint. This
can be overridden in Q¢ Designer by setting the widget’s sizePolicy property.
The meaning of the various size policies is explained in Chapter 6 (Layout
Management).

vold IconEditor::setPenColor(const QColor &newColor)

{

curColor = newColor;

}

Subclassing QWidget 103

The setpPencColor () function sets the current pen color. The color will be used
for newly drawn pixels.

void IconEditor::setIconImage(const QImage &newImage)
{
if (newImage != image) {
image = newlmage.convertDepth(32);
image.detach() ;
update() ;
updateGeometry() ;

}

The setIconImage() function sets the image to edit. We call convertDepth()
to make the image 32-bit if it isn’t already. Elsewhere in the code, we will
assume that the image data is stored as 32-bit orgb values.

We also call detach () to take a deep copy of the data stored in the image. This
is necessary because the image data might be stored in ROM. QImage tries
to save time and memory by copying the image data only when explicitly
requested to do so. This optimizationis called explicit sharing and is discussed
with QMemArray<T> in the “Pointer-Based Containers” section of Chapter 11.

After setting the image variable, we call QWidget: :update () to force a repainting
of the widget using the new image. Next, we call Qwidget: :updateGeometry ()
to tell any layout that contains the widget that the widget’s size hint has
changed. The layout will then automatically adapt to the new size hint.

void IconEditor::setZoomFactor(int newZoom)

{
if (newZoom < 1)
newzoom = 1;

if (newZoom != zoom) {
ZOOM = newzoom;
update() ;
updateGeometry() ;

}

The setzoomFactor () function sets the zoom factor for the image. To prevent
division by zero later, we correct any value below 1. Again, we call update()
and updateGeometry () to repaint the widget and to notify any managing layout
about the size hint change.

The penColor(), iconImage(), and zoomFactor () functions are implemented as
inline functions in the header file.

We will now review the code for the paintEvent () function. This function is
IconEditor’s most important function. It is called whenever the widget needs
repainting. The default implementation in Qwidget does nothing, leaving the
widget blank.

104 5. Creating Custom Widgets

Just like contextMenuEvent () and closeEvent (), which we met in Chapter 3,
paintEvent () is an event handler. Qt has many other event handlers, each
of which corresponds to a different type of event. Chapter 7 covers event
processing in depth.

There are many situations when a paint event is generated and paintEvent ()
is called:

¢ When a widget is shown for the first time, the system automatically
generates a paint event to force the widget to paint itself.

¢ When a widget is resized, the system automatically generates a paint
event.

¢ If the widget is obscured by another window and then revealed again, a
paint event is generated for the area that was hidden (unless the window
system stored the area).

We can also force a paint event by calling Qwidget: :update() or QWidget::re-
paint (). The difference between these two functionsis that repaint () forces an
immediate repaint, whereas update () simply schedules a paint event for when
Qt next processes events. (Both functions do nothing if the widget isn’t visible
on screen.) If update() is called multiple times, Qt compresses the consecutive
paint events into a single paint event to avoid flicker. In IconEditor, we always
use update().

Here’s the code:

void IconEditor::paintEvent(QPaintEvent *)

{

QPainter painter(this);

if (zoom >= 3) {
painter.setPen(colorGroup () .foreground()) ;
for (int 1 = 0; 1 <= image.width(); ++1i)
painter.drawLine(zoom * i, 0,
zoom * i, zoom * image.height());
for (int j = 0; j <= image.height(); ++j)
painter.drawLine(0, zoom * j,

zoom * image.width(), zoom * j);
}
for (int i = 0; i < image.width(); ++i) {
for (int j = 0; j < image.height(); ++j)

drawImagePixel (&painter, i, j);

}

We start by constructing a Qrainter object on the widget. If the zoom factor is
3 or more, we draw the horizontal and vertical lines that form the grid using
the Qrainter: :drawLine () function.

A call to grainter: :drawLine () has the following syntax:

painter.drawLine(x1, yI, x2, y2);

Subclassing QWidget 105

where (x1, y1) is the position of one end of the line and (x2, y2) is the position of
the other end. There is also an overloaded version of the function that takes
two QPoints instead of four ints.

The top-left pixel of a Qt widget is located at position (0, 0), and the bottom-
right pixel islocated at (width() — 1, height () - 1). Thisis similar to the conven-
tional Cartesian coordinate system, but upside down, and makes a lot of sense
in GUI programming. It is perfectly possible to change QPainter’s coordinate
system by using transformations, such as translation, scaling, rotation, and
shearing. This is covered in Chapter 8 (2D and 3D Graphics).

(0,0)

(XY,

(X ¥,)

(width() - 1, height() - 1)

Figure 5.3. Drawing a line using QPainter

Before we call drawLine () on the QPainter, we set the line’s color using setpen().
We could hard-code a color, like black or gray, but a better approach is to use
the widget’s palette.

Every widget is equipped with a palette that specifies which colors should be
used for what. For example, there is a palette entry for the background color
of widgets (usually light gray) and one for the color of text on that background
(usually black). By default, a widget’s palette adopts the window system’s color
scheme. By using colors from the palette, we ensure that TconEditor respects
the user’s preferences.

A widget’s palette consists of three color groups: active, inactive, and disabled.
Which color group should be used depends on the widget’s current state:

* The active color group is used for widgets in the currently active window.
¢ The inactive color group is used for widgets in the other windows.

¢ The disabled color group is used for disabled widgets in any window.

The Qwidget::palette() function returns the widget’s palette as a Qralette
object. The color groups are available through Qralette’s active(), inactive(),
and disabled() functions, and are of type QColorGroup. For convenience,
QWidget::colorGroup () returns the correct color group for the current state of
the widget, so we rarely need to access the palette directly.

The paintEvent () function finishes by drawing the image itself, using the
IconEditor::drawImagePixel () function to draw each of the icon’s pixels as
filled squares.

106 5. Creating Custom Widgets

void IconEditor::drawImagePixel (QPainter *painter, int i, int j)
{

QColor color;

QRgb rgb = image.pixel(i, J);

if (gAlpha(rgb) == 0)

color = colorGroup().base();
else

color.setRgb(rgb);

if (zoom >= 3) {
painter->fillRect(zoom * i + 1, zoom * j + 1,
zoom - 1, zoom - 1, color);
} else {
painter->fillRect(zoom * i, zoom * j,
zoom, zoom, color);

}

The drawImagePixel () function draws a zoomed pixel using a Qrainter. The i
and j parameters are pixel coordinates in the QImage—not in the widget. (If
the zoom factor is 1, the two coordinate systems coincide exactly.) If the pixel
is transparent (its alpha component is 0), we use the current color group’s
“base” color (typically white) to draw the pixel; otherwise, we use the pixel’s
color in the image. Then we call gPainter::fillRect () to draw a filled square.
If the grid is shown, the square is reduced by one pixel in both directions to
avoid painting over the grid.

(0,0)

(x,y)

(width() - 1, height() - 1)

Figure 5.4. Drawing a rectangle using QPainter

The call to Qrainter::fillRect () has the following syntax:

painter->fillRect(x, y, w, h, brush);

where (x, y) is the position of the top-left corner of the rectangle, wx his the size
of the rectangle, and brush specifies the color to fill with and the fill pattern to
use. By passing a QColor as the brush, we obtain a solid fill pattern.

void IconEditor::mousePressEvent (QMouseEvent *event)
{
if (event->button() == LeftButton)
setImagePixel (event->pos (), true);
else if (event->button() == RightButton)

Subclassing QWidget 107

setImagePixel (event->pos(), false);

}

When the user presses a mouse button, the system generates a “mouse press”
event. By reimplementing Qwidget: :mousePressEvent (), we can respond to this
event and set or clear the image pixel under the mouse cursor.

If the user pressed the left mouse button, we call the private function setIm-
agePixel () with true as the second argument, telling it to set the pixel to the
current pen color. If the user pressed the right mouse button, we also call set-
ImagePixel (), but pass false to clear the pixel.

void IconEditor::mouseMoveEvent (QMouseEvent *event)

{
if (event->state() & LeftButton)

setImagePixel (event->pos(), true);
else if (event->state() & RightButton)
setImagePixel (event->pos(), false);

}

The mouseMoveEvent () handles “mouse move” events. By default, these events
are only generated when the user is holding down a button. It is possible to
change this behavior by calling Qwidget::setMouseTracking(), but we don’t
need to do so for this example.

Just as pressing the left or right mouse button sets or clears a pixel, keeping it
pressed and hovering over a pixel is also enough to set or clear a pixel. Since
it’s possible to hold more than one button pressed down at a time, the value
returned by QMouseEvent::state() is a bitwise OR of the mouse buttons (and
of modifier keys like Shift and Ctrl). We test whether a certain button is pressed
down using the & operator, and if it is, we call setImagePixel().

void IconEditor::setImagePixel (const QPoint &pos, bool opaque)
{

pos.x() / zoom;

pos.y() / zoom;

int 1 =
int j =
if (image.rect().contains(i, 3)) {
if (opaque)
image.setPixel(i, j, penColor().rgb());
else
image.setPixel (i, j, gRgba(0, 0, 0, 0));

QPainter painter(this);
drawImagePixel (&painter, i, J);

}

The setImagePixel () function is called from mousePressEvent () and mouseMove-
Event () to set or clear a pixel. The pos parameter is the position of the mouse
on the widget.

The first step is to convert the mouse position from widget coordinates to
image coordinates. This is done by dividing the x and y components of the
mouse position by the zoom factor. Next, we check whether the point is within

108 5. Creating Custom Widgets

the correct range. The check is easily made using QImage: :rect () and QRect::
contains (); this effectively checks that i is between 0 and image.width() - 1
and that j is between 0 and image.height () - 1.

Depending on the opaque parameter, we set or clear the pixel in the image.
Clearing a pixel is really setting it to be transparent. At the end, we call
drawImagePixel () to repaint the individual pixel that changed.

Now that we have reviewed the member functions, we will return to the
WStaticContents flag that we used in the constructor. This flag tells Qt that
the widget’s content doesn’t change when the widget is resized and that the
content stays rooted to the widget’s top-left corner. Qt uses this information
to avoid needlessly repainting areas that are already shown when resizing
the widget.

Normally, when a widget is resized, Qt generates a paint event for the widget’s
entire visible area. But if the widget is created with the wstaticContents flag,
the paint event’s region is restricted to the pixels that were not previously
shown. If the widget is resized to a smaller size, no paint event is generated
at all.

Figure 5.5. Resizing a WStaticContents widget

The IconEditor widget is now complete. Using the information and examples
from earlier chapters, we could write code that uses the IconEditor as a
window in its own right, as a central widget in a QMainWindow, as a child widget
inside a layout, or as a child widget inside a QScrollview (p. 145). In the next
section, we will see how to integrate it with Q¢ Designer.

Integrating Custom Widgets with Qt Designer

Before we can use custom widgets in Q¢ Designer, we must make Q¢ Designer
aware of them. There are two techniques for doing this: the “simple custom
widget” approach and the plugin approach.

The “simple custom widget” approach consists of filling in a dialog box in Q¢
Designer with some information about the custom widget. The widget can
then be used in forms developed using Q¢ Designer, but the widget is only rep-
resented by an icon and a dark gray rectangle while the form is edited or pre-
viewed. Here’s how to integrate the HexSpinBox widget using this approach:

Integrating Custom Widgets with @t Designer 109

1. Click Tools|Custom|Edit Custom Widget. This will launch @t Designer’s cus-
tom widget editor.

2. Click New Widget.

3. Change the class name from MyCustomiidget to HexSpinBox and the header
file from mycustomwidget.h to hexspinbox.h.

4. Change the size hint to (60, 20).
5. Change the size policy to (Minimum, Fixed).

The widget will then be available in the “Custom Widgets” section of Q¢
Designer’s toolbox.

€ Edit Custom Widgets

E" HexSpinBaox Definttion Signals Slots | Properties
Delete Widget Class: HexSpinBox

Headeffile: |hexspinboxh E] Local
Pixmap: @ E]
Size Hint: 60 = [20 s
Size Policy | Minimum | | Fixed v

[] Container Widget

Load Descriptions

Figure 5.6. Qt Designer’s custom widget editor

The plugin approach requires the creation of a plugin library that Q¢ Designer
can load at run-time and use to create instances of the widget. The real widget
is then used by Q¢ Designer when editing the form and for previewing. We will
integrate the IconEditor as a plugin to demonstrate how to do it.

First, we must subclass QWidgetPlugin and reimplement some virtual func-
tions. We can do everything in the same source file. We will assume that the
plugin source code is located in a directory called iconeditorplugin and that
the IconEditor source code is located in a parallel directory called iconeditor.

Here’s the header file:
#include <gwidgetplugin.h>
#include "../iconeditor/iconeditor.h"

class IconEditorPlugin : public QWidgetPlugin
{
public:
QStringList keys() const;
QWidget *create(const QString &key, QWidget *parent,
const char *name);

110 5. Creating Custom Widgets

QString includeFile(const QString &key) const;
QString group(const QString &key) const;
QIconSet iconSet(const QString &key) const;
QString toolTip(const QString &key) const;
QString whatsThis(const QString &key) const;
bool isContainer(const QString &key) const;

}i

The 1conEditorPlugin subclassis a factory class that encapsulates the 1conkd-
itor widget. The functions are used by @t Designer to create instances of the
class and to obtain information about it.

QStringList IconEditorPlugin::keys() const
{
return QStringList() << "IconEditor";

}

The keys() function returns a list of widgets provided by the plugin. The
example plugin only provides the IconEditor widget.

QWidget *IconEditorPlugin::create(const QString &, QWidget *parent,
const char *name)
{
return new IconEditor(parent, name);

}

The create() function is called by Q¢ Designer to create an instance of a widget
class. The first argument is the widget’s class name. We can ignore it in this
example, because we only provide one class. All the other functions also take
a class name as their first argument.

QString IconEditorPlugin::includeFile(const QString &) const
{
return "iconeditor.h";

}

The includefFile() function returns the name of the header file for the
specified widget encapsulated by the plugin. The header file is included in the
code generated by the uic tool.

bool IconEditorPlugin::isContainer(const QString &) const
{
return false;

}

The isContainer () function returns true if the widget can contain other wid-
gets; otherwise, it returns false. For example, QFrame is a widget that can con-
tain other widgets. We return false for the IconEditor, since it doesn’t make
sense for it to contain other widgets. Strictly speaking, any widget can con-
tain other widgets, but Q¢ Designer disallows this when isContainer() returns
false.

QString IconEditorPlugin::group(const QString &) const
{

return "Plugin Widgets";
}

Integrating Custom Widgets with @t Designer 111

The group () function returns the name of the toolbox group this custom widget
should belong to. If the name isn’t already in use, Q¢ Designer automatically
creates a new group for the widget.

QIconSet IconEditorPlugin::iconSet(const QString &) const
{
return QIconSet (QPixmap::fromMimeSource("iconeditor.png"));

}

The iconset () function returns the icon to use to represent the custom widget
in Qt Designer’s toolbox.

QString IconEditorPlugin::toolTip(const QString &) const
{

return "Icon Editor";

}

The toolTip() function returns the tooltip to show when the mouse hovers
over the custom widget in Q¢ Designer’s toolbox.

QString IconEditorPlugin::whatsThis(const QString &) const
{
return "Widget for creating and editing icons";

}

The whatsThis () function returns the “What’s This?” text for @t Designer to
display.

Q_EXPORT_PLUGIN(IconEditorPlugin)

At the end of the source file that implements the plugin class, we must use the
Q_EXPORT_PLUGIN() macro to make the plugin available to @¢ Designer.

The .pro file for building the plugin looks like this:

TEMPLATE = 1lib

CONFIG += plugin

HEADERS = ../iconeditor/iconeditor.h

SOURCES = iconeditorplugin.cpp \
../iconeditor/iconeditor.cpp

IMAGES = images/iconeditor.png

DESTDIR = $(QTDIR) /plugins/designer

The .pro file assumes that the QTDIR environment variable is set to the direc-
tory where Qt is installed. When you type make or nmake to build the plugin, it
will automatically install itself in @t Designer’s plugins directory.

Once the plugin is built, the TconEditor widget can be used in ¢ Designer in
the same way as any of Qt’s built-in widgets.

112 5. Creating Custom Widgets

Double Buffering

Double buffering is a technique that can be used to provide a snappier user
interface and to eliminate flicker. Flicker occurs when the same pixel is
painted multiple times with different colors in a very short period of time. If
this occurs for only one pixel, it isn’t a problem, but if it occurs for lots of pixels
at the same time, it can be distracting for the user.

When Qt generates a paint event, it first erases the widget using the palette’s
background color. Then, in paintEvent (), the widget only needs to paint the
pixels that are not the same color as the background. This two-step approach
is very convenient, because it means we can simply paint what we need on the
widget without worrying about the other pixels.

Unfortunately, the two-step approach is also a major source of flicker. For ex-
ample, if the user resizes the widget, the widget is first cleared in its entirety,
and then the pixels are painted. The flicker is even worse if the window sys-
tem shows the contents of the window as it is resized, because then the widget
is repeatedly erased and painted.

Figure 5.7. Resizing a widget that has no provision against flicker

The wstaticContents flag used to implement the IconEditor widget is one
solution to this problem, but it can only be used for widgets whose content is
independent of the size of the widget. Such widgets are rare. Most widgets
tend to stretch their contents to consume all the available space. They need to
be completely repainted when they are resized. We can still avoid flicker, but
the solution is slightly more complicated.

The first rule to avoid flicker is to construct the widget with the wNoAutoErase
flag. This flag tells Qt not to erase the widget before a paint event. The old
pixels are then left unchanged, and any newly revealed pixels are undefined.

Figure 5.8. Resizing a WNoAutoErase widget

Double Buffering 113

When using WNoAutoErase, it is important that the paint handler sets all the
pixels explicitly. Any pixel that is not set in the paint event will keep its
previous value, which isn’t necessarily the background color.

The second rule to avoid flicker is to paint every pixel just once. The easi-
est way to implement this requirement is to draw the whole widget in an off-
screen pixmap and to copy the pixmap onto the widget in one go. Using this
approach, it doesn’t matter if some pixels are painted multiple times because
the painting takes place off-screen. This is double buffering.

Adding double buffering to a custom widget to eliminate flicker is straightfor-
ward. Suppose the original paint event handler looks like this:

void MyWidget::paintEvent (QPaintEvent *)
{

QPainter painter(this);

drawMyStuff (&painter);
}

The double-buffered version looks like this:

void MyWidget::paintEvent (QPaintEvent *event)
{

static QPixmap pixmap;
QRect rect = event->rect();

QSize newSize = rect.size().expandedTo(pixmap.size());
pixmap.resize(newSize);
pixmap.fill(this, rect.topLeft());

QPainter painter(&pixmap, this);
painter.translate(-rect.x(), -rect.y());
drawMyStuff (&painter);
bitBlt(this, rect.x(), rect.y(), &pixmap, 0, 0,
rect.width(), rect.height());
}

First, we resize a Qpixmap to be at least as large as the bounding rectangle
of the region to repaint. (A “region” is very often either a rectangle or an L-
shaped area, but it can be arbitrarily complex.) We make the Qrixmap a stat-
ic variable to avoid repeatedly allocating and deallocating it. For the same
reason, we never shrink the Qrixmap; the calls to QSize::expandedTo() and
Qpixmap::resize() ensure that it is always large enough. After resizing, we
fill the Qrixmap with the widget’s erase color or background pixmap using
Qpixmap::fill(). The second argument to fi11() specifies which point in the
widget the Qpixmap’s top-left pixel corresponds to. (This makes a difference if
the widget is to be erased using a pixmap instead of a uniform color.)

The Qrixmap class is similar to both QImage and Qwidget. Like a QImage, it stores
an image, but the color depth and possibly the colormap are aligned with
the display, rather like a hidden Qwidget. If the window system is running
in 8-bit mode, all widgets and pixmaps are restricted to 256 colors, and Qt
automatically maps 24-bit color specifications onto 8-bit colors. (Qt’s color
allocation strategy is controlled by calling gapplication::setColorSpec().)

114 5. Creating Custom Widgets

Next, we create a QPainter to operate on the pixmap. By passing the this point-
er to the constructor, we tell Qpainter to adopt some of the widget’s settings,
such as its font. We translate the painter to paint the correct rectangle into
the pixmap, before we perform the drawing using the gpainter as usual.

Finally, we copy the pixmap to the widget using the bitBlt () global function,
whose name stands for “bit-block transfer”.

Double buffering is not only useful for avoiding flicker. It is beneficial if the
widget’s rendering is complex and needed repeatedly. We can then store a
pixmap permanently with the widget, always ready for the next paint event,
and copy the pixmap to the widget whenever we receive a paint event. It is
especially helpful when we want to do small modifications, such as draw-
ing a rubber band, without recomputing the whole widget’s rendering over
and over.

We will round off this chapter by reviewing the plotter custom widget. This
widget uses double buffering, and also demonstrates some other aspects of
Qt programming, including keyboard event handling, manual layout, and
coordinate systems.

The pPlotter widget displays one or more curves specified as vectors of coor-
dinates. The user can draw a rubber band on the image, and the plotter will
zoom in on the area enclosed by the rubber band. The user draws the rubber
band by clicking a point on the graph, dragging the mouse to another position
with the left mouse button held down, and releasing the mouse button.

Figure 5.9. Zooming in on the Plotter widget

The user can zoom in repeatedly by drawing a rubber band multiple times,
zooming out using the Zoom Out button, and then zooming back in using the
Zoom In button. The Zoom In and Zoom Out buttons appear the first time they
become available, so that they don’t clutter the display if the user doesn’t
zoom the graph.

The plotter widget can hold the data for any number of curves. It also
maintains a stack of plotSettings, each of which corresponds to a particular
zoom level.

Double Buffering 115

Let’s review the class, starting with plotter.h:

#ifndef PLOTTER_H
#define PLOTTER_H

#include <gpixmap.h>
#include <gwidget.h>

#include <map>
#include <vector>

class QToolButton;
class PlotSettings;

typedef std::vector<double> CurveData;

We include the standard <map> and <vector> header files. We don’t import all
the std namespace’s symbols into the global namespace, because it’s bad style
to do this in a header file.

We define CurveData as a synonym for std::vector<double>. We will store a
curve’s points as successive pairs of x and y values in the vector. For example,
the curve defined by the points (0, 24), (1, 44), (2, 89) is represented by the
vector [0, 24, 1, 44, 2, 89].

class Plotter : public QWidget
{
Q_OBJECT
public:
Plotter (QWidget *parent = 0, const char *name = 0,
WFlags flags = 0);

void setPlotSettings(const PlotSettings &settings);
void setCurveData(int id, const CurveData &data);
void clearCurve(int id);

QSize minimumSizeHint () const;

QSize sizeHint() const;

public slots:
void zoomIn();
void zoomOut () ;

We provide three public functions for setting up the plot, and two public
slots for zooming in and out. We also reimplement minimumSizeHint () and
sizeHint () from Qwidget.

protected:
void paintEvent (QPaintEvent *event);
void resizeEvent (QResizeEvent *event);
void mousePressEvent (QMouseEvent *event);
void mouseMoveEvent (QMouseEvent *event);
void mouseReleaseEvent (QMouseEvent *event);
void keyPressEvent (QKeyEvent *event);
void wheelEvent (QWheelEvent *event);

In the protected section of the class, we declare all the gwidget event handlers
that we need to reimplement.

116 5. Creating Custom Widgets

private:
void updateRubberBandRegion() ;
void refreshPixmap();
void drawGrid(QPainter *painter);
void drawCurves (QPainter *painter);

enum { Margin = 40 };

QToolButton *zoomInButton;
QToolButton *zoomOutButton;
std::map<int, CurveData> curveMap;
std::vector<PlotSettings> zoomStack;
int curZoom;

bool rubberBandIsShown;

QRect rubberBandRect;

QPixmap pixmap;

Vi

In the private section of the class, we declare a constant, a few functions for
painting the widget, and several member variables. The Margin constant is
used to provide some spacing around the graph.

Among the member variables is pixmap of type opixmap. This variable holds
a copy of the whole widget’s rendering, identical to what is shown on screen.
The plot is always drawn onto this off-screen pixmap first; then the pixmap is
copied onto the widget.

class PlotSettings

{

public:
PlotSettings();

void scroll(int dx, int dy);

void adjust();

double spanX() const { return maxX - minX; }
double spanY() const { return maxY - minY; }

double minX;
double maxX;
int numXTicks;
double minY;
double maxy;
int numYTicks;

private:
void adjustAxis(double &min, double &max, int &numTicks);
Vi

tendif
The PlotSettings class specifies the range of the x and y axes and the number

of ticks for these axes. Figure 5.10 shows the correspondence between a
PlotSettings object and the scales on a Plotter widget.

By convention, numxTicks and numYTicks are off by one;if numxTicksis 5, Plotter
will actually draw 6 tick marks on the x axis. This simplifies the calculations
later on.

Double Buffering 117

maxy

numYTicks

. numXTicks
minY T T T T

minX maxX

Figure 5.10. PlotSettings’s member variables

Now let’s review the implementation file:

#include <gpainter.h>
#include <gstyle.h>
#include <gtoolbutton.h>

#include <cmath>
using namespace std;

#include "plotter.h"

We include the expected header files and import all the std namespace’s
symbols into the global namespace.

Plotter::Plotter (QWidget *parent, const char *name, WFlags flags)

{

}

: QWidget (parent, name, flags | WNoAutoErase)

setBackgroundMode (PaletteDark) ;

setSizePolicy(QSizePolicy: :Expanding, QSizePolicy::Expanding);
setFocusPolicy(StrongFocus) ;

rubberBandIsShown = false;

zoomInButton = new QToolButton(this);
zoomInButton->setIconSet (QPixmap: : fromMimeSource ("zoomin.png"));
zoomInButton->adjustSize();

connect (zoomInButton, SIGNAL(clicked()), this, SLOT(zoomIn()));

zoomOutButton = new QToolButton(this);
zoomOutButton->setIconSet (
QPixmap::fromMimeSource ("zoomout.png"));
zoomOutButton->adjustSize() ;
connect (zoomOutButton, SIGNAL(clicked()), this, SLOT(zoomOut()));

setPlotSettings (PlotSettings());

The plotter has a flags parameter in addition to parent and name. This param-
eter is simply passed on to the base class constructor, along with wNoAutoErase.
The parameter is especially useful for widgets that are likely to be used as
stand-alone windows, because it allows the user of the class to configure the
window frame and title bar.

118 5. Creating Custom Widgets

The setBackgroundMode () call tells gwidget to use the “dark” component of the
palette as the color for erasing the widget, instead of the “background” com-
ponent. Although we pass the wNoautoErase flag to the base class constructor,
Qt still needs a default color that it may use to fill any newly revealed pixels
when the widget is resized to a larger size, before paintEvent () even has the
chance to paint the new pixels. Since the background of the plotter widget
will be dark, it makes sense to paint these pixels dark.

The setsizepPolicy() call setsthe widget’s size policy to QSizePolicy: : Expanding
in both directions. This tells any layout manager that is responsible for the
widget that the widget is especially willing to grow, but can also shrink. This
setting is typical for widgets that can take up a lot of screen space. The default
is QSizePolicy::Preferred in both directions, which means that the widget
prefers to be the size of its size hint, but it can be shrunk down to its minimum
size hint or expanded indefinitely if necessary.

The setFocuspPolicy() call makes the widget accept focus by clicking or by
pressing Tab. When the Plotter has focus, it will receive events for key presses.
The Plotter widget understands a few keys: + to zoom in, - to zoom out, and
the arrow keys to scroll up, down, left, and right.

Figure 5.11. Scrolling the Plotter widget

Still in the constructor, we create two QToolButtons, each with an icon. These
buttons allow the user to navigate through the zoom stack. The button’sicons
are stored in an image collection. Any application that usesthe plotter widget
will need this entry in its .pro file:

IMAGES += images/zoomin.png \
images/zoomout.png

The calls to adjustSize() on the buttons sets their sizes to be that of their
size hints.

The call to setPlotSettings () at the end does the rest of the initialization.

void Plotter::setPlotSettings(const PlotSettings &settings)
{

zoomStack.resize(1);

zoomStack[0] = settings;

Double Buffering 119

curzoom = 0;
zoomInButton->hide() ;
zoomOutButton->hide() ;
refreshPixmap() ;

}

The setpPlotSettings() function is used to specify the plotSettings to use for
displaying the plot. Itis called by the Plotter constructor,and can be called by
users of the class. The plotter starts out at its default zoom level. Each time
the user zooms in, a new PlotSettings instance is created and put onto the
zoom stack.

The zoom stack is represented by two member variables:

* zoomStack holds the different zoom settings as a vector<PlotSettings>.

e curZoom holds the current PlotSettings’s index in the zoomStack.

After a call to setPlotSettings (), the zoom stack contains only one entry, and
the Zoom In and Zoom Out buttons are hidden. These buttons will not be shown
until we call show() on them in the zoomIn() and zoomoOut () slots. (Normally,
it is sufficient to call show() on the top-level widget to show all the children.
But when we explicitly call hide () on a child widget, it is hidden until we call
show() on it.)

The call to refreshPixmap() is necessary to update the display. Usually, we
would call update(), but here we do things slightly differently because we
want to keep a Qpixmap up to date at all times. After regenerating the pixmap,
refreshPixmap () calls update() to copy the pixmap onto the widget.

void Plotter::zoomOut ()
{
if (curZoom > 0) {

—--curzoom;
zoomOutButton->setEnabled(curZoom > 0);
zoomInButton->setEnabled(true);
zoomInButton->show() ;
refreshPixmap() ;

}

The zoomout () slot zooms out if the graph is zoomed in. It decrements the
current zoom level and enables the Zoom Out button depending on whether the
graph can be zoomed out any more or not. The Zoom In button is enabled and
shown, and the display is updated with a call to refreshPixmap().

void Plotter::zoomIn()
{

if (curZoom < (int)zoomStack.size() - 1) {
++curZoom;
zoomInButton->setEnabled(
curZoom < (int)zoomStack.size() - 1);

zoomOutButton->setEnabled (true) ;
zoomOutButton->show () ;
refreshPixmap () ;

120 5. Creating Custom Widgets

}

If the user has previously zoomed in and then out again, the PlotSettings for
the next zoom level will be in the zoom stack, and we can zoom in. (Otherwise,
it is still possible to zoom in using a rubber band.)

The slot increments curzoom to move one level deeper into the zoom stack, sets
the Zoom In button enabled or disabled depending on whether it’s possible to
zoom in any further, and enables and shows the Zoom Out button. Again, we
call refreshpixmap() to make the plotter use the latest zoom settings.

void Plotter::setCurveData(int id, const CurveData &data)

{
curveMap([id] = data;
refreshPixmap() ;

}

The setCurvedata () function sets the curve data for a given curve ID. If a curve
with the same ID already existsin the plotter, it is replaced with the new curve
data; otherwise, the new curve is simply inserted. The curves are stored in the
curveMap member variable of type map<int, CurveData>.

Again, we call our own refreshPixmap() function, rather than update(), to
update the display.

void Plotter::clearCurve(int id)
{
curveMap.erase(id);
refreshPixmap() ;

}
The clearcurve() function removes a curve from curveMap.

QSize Plotter::minimumSizeHint() const
{
return QSize(4 * Margin, 4 * Margin);

}

The minimumSizeHint () function is similar to sizeHint(); just as sizeHint()
specifies a widget’s ideal size, minimumSizeHint () specifies a widget’s ideal
minimum size. A layout never resizes a widget below its minimum size hint.

The value we return is 160 x 160 to allow for the margin on all four sides and
some space for the plot itself. Below that size, the plot would be too small to
be useful.

QSize Plotter::sizeHint() const

{
return QSize(8 * Margin, 6 * Margin);

}

In sizeHint (), we return an “ideal” size in proportion to the margin and with
a pleasing 4:3 aspect ratio.

Double Buffering 121

This finishes the review of the Plotter’s public functions and slots. Now let’s
review the protected event handlers.

void Plotter::paintEvent (QPaintEvent *event)
{
QMemArray<QRect> rects = event->region().rects();
for (int 1 = 0; i < (int)rects.size(); ++i)
bitBlt(this, rects[i].topLeft(), &pixmap, rects[il]);

QPainter painter(this);

if (rubberBandIsShown) {
painter.setPen(colorGroup().light());
painter.drawRect (rubberBandRect.normalize()) ;

if (hasFocus()) {
style().drawPrimitive(QStyle::PE_FocusRect, &painter,
rect(), colorGroup(),
QStyle::Style_FocusAtBorder,
colorGroup () .dark());

}

Normally, paintEvent () is the place where we perform all the drawing. But
here all the plot drawing is done beforehand in refreshpixmap(), so we can
render the entire plot simply by copying the pixmap onto the widget.

The call to Qregion::rect() returns an array of Qrects that define the region
to repaint. We use bitBlt() to copy each rectangular area from the pixmap to
the widget. The bitB1t () global function has the following syntax:

bitBlt(dest, destPos, source, sourceRect);

where sourceis the source widget or pixmap, sourceRect is the rectangle in the
source that should be copied, dest is the destination widget or pixmap, and
destPos is the top-left position in the destination.

destPos
sourceRect @
source
dest

Figure 5.12. Copying arbitrary rectangles to and from pixmaps and widgets

It would have been equally correct to call bitBlt () just once on the region’s
bounding rectangle, as we did in a previous code snippet (p. 113). However,
because we call update() to erase and redraw the rubber band repeatedly
in the mouse event handlers (as we will see shortly), and the rubber band
outline is basically four tiny rectangles (two 1-pixel-wide rectangles and two

122 5. Creating Custom Widgets

1-pixel-high rectangles), we gain some speed by breaking the region down into
its constituent rectangles and calling bitB1t () for each rectangle.

Once the plot is shown on screen, we draw the rubber band and the focus rect-
angle on top of it. For the rubber band, we use the “light” component from the
widget’s current color group as the pen color to ensure good contrast with the
“dark” background. Notice that we draw directly on the widget, leaving the
off-screen pixmap untouched. The focus rectangle is drawn using the widget
style’s drawprimitive() function with PE_FocusRect as its first argument.

The gwidget::style() function returns the widget style to use to draw the
widget. In Qt, a widget style is a subclass of Qstyle. The built-in styles include
QWindowsStyle, QWindowsXPStyle, QMotifStyle, and QMacStyle. Each of these
styles reimplements the virtual functions in Qstyle to perform the drawing in
the correct way for the platform the style is emulating. The drawprimitive()
function is one of these functions; it draws “primitive elements” like panels,
buttons, and focus rectangles. The widget style is usually the same for all
widgets in an application (QApplication::style()), but it can be overridden on
a per-widget basis using QWidget: :setStyle().

By subclassing Qstyle, it is possible to define a custom style. This can be done
to give a distinctive look to an application or a suite of applications. Whileitis
generally advisable to use the target platform’s native look and feel, Qt offers
a lot of flexibility if you want to be adventurous.

Qt’s built-in widgets rely almost exclusively on QStyle to paint themselves.
This is why they look like native widgets on all platforms supported by Qt.
Custom widgets can be made style-aware either by using Qstyle to paint
themselves or by using built-in Qt widgets as child widgets. For plotter, we
use both approaches: The focus rectangle is drawn using QStyle, and the Zoom
In and Zoom Out buttons are built-in Qt widgets.

void Plotter::resizeEvent (QResizeEvent ¥*)
{
int x = width() - (zoomInButton->width()
+ zoomOutButton->width() + 10);
zoomInButton->move(x, 5);
zoomOutButton->move (x + zoomInButton->width() + 5, 5);
refreshPixmap() ;

}

Whenever the plotter widget is resized, Qt generates a “resize” event. Here,
we reimplement resizeEvent () to place the Zoom In and Zoom Out buttons at the
top right of the pPlotter widget.

We move the Zoom In button and the Zoom Out button to be side by side, sepa-
rated by a 5-pixel gap and with a 5-pixel offset from the top and right edges of
the parent widget.

If we wanted the buttons to stay rooted to the top-left corner, whose coordi-
nates are (0, 0), we would simply have moved them there in the Plotter con-
structor. But we want to track the top-right corner, whose coordinates depend

Double Buffering 123

on the size of the widget. Because of this, it’s necessary to reimplement re-
sizeEvent () and to set the position there.

We didn’t set any positions for the buttons in the plotter constructor. This
isn’t an issue, since Qt always generates a resize event before a widget is
shown for the first time.

An alternative to reimplementing resizeEvent () and laying out the child wid-
gets manually would have been to use a layout manager (for example, QGrid-
Layout). However, it would have been a little more complicated and would
have consumed more resources. When we write widgets from scratch as we
are doing here, laying out our child widgets manually is usually the right
approach.

At the end, we call refreshPixmap () to redraw the pixmap at the new size.

void Plotter::mousePressEvent (QMouseEvent *event)
{
if (event->button() == LeftButton) {

rubberBandIsShown = true;
rubberBandRect.setTopLeft (event->pos());
rubberBandRect.setBottomRight (event->pos());
updateRubberBandRegion() ;
setCursor(crossCursor) ;

}

When the user presses the left mouse button, we start displaying a rubber
band. This involves setting rubberBandIsShown to true, initializing the rubber-
BandRect member variable with the current mouse pointer position, scheduling
a paint event to paint the rubber band, and changing the mouse cursor to have
a crosshair shape.

Qt provides two mechanisms for controlling the mouse cursor’s shape:

® (Qnidget::setCursor() setsthe cursor shape to use when the mouse hovers
over a particular widget. If no cursor is set for a widget, the parent wid-
get’s cursor is used. The default for top-level widgets is an arrow cursor.

® QApplication::setOverrideCursor() setsthe cursor shape for the entire ap-
plication, overriding the cursors set by individual widgets until restore-
OverrideCursor() is called.

In Chapter 4, we called QApplication::setOverrideCursor() with waitCursor to
change the application’s cursor to the standard wait cursor.

void Plotter::mouseMoveEvent (QMouseEvent *event)
{
if (event->state() & LeftButton) {
updateRubberBandRegion () ;
rubberBandRect.setBottomRight (event->pos()) ;
updateRubberBandRegion() ;

124 5. Creating Custom Widgets

When the user moves the mouse cursor while holding the left button, we call
updateRubberBandRegion() to schedule a paint event to repaint the area where
the rubber band was, we update rubberBandRect to account for the mouse move,
and we call updateRubberBandRegion() a second time to repaint the area where
the rubber band has moved to. This effectively erases the rubber band and
redraws it at the new coordinates.

The rubberBandrect variable is of type Qrect. A QrRect can be defined either as
an (x, y, w, h) quadruple—where (x, y) is the position of the top-left corner and
w x h is the size of the rectangle—or as a top-left and a bottom-right coordinate
pair. Here, we have used the coordinate pair representation. We set the point
where the user clicked the first time as the top-left corner and the current
mouse position as the bottom-right corner.

If the user moves the mouse upward or leftward, it’s likely that rubberBand-
Rect’s nominal bottom-right corner will end up above or to the left of its top-left
corner. If thisoccurs,the Qrect will have a negative width or height. Qrect has
a normalize() function that adjusts the top-left and bottom-right coordinates
to obtain a nonnegative width and height.

void Plotter::mouseReleaseEvent (QMouseEvent *event)
{
if (event->button() == LeftButton) {
rubberBandIsShown = false;
updateRubberBandRegion() ;
unsetCursor() ;

QRect rect = rubberBandRect.normalize();

if (rect.width() < 4 || rect.height() < 4)
return;

rect.moveBy(-Margin, -Margin);

PlotSettings prevSettings = zoomStack[curZoom];
PlotSettings settings;

double dx = prevSettings.spanX() / (width() - 2 * Margin);
double dy = prevSettings.spanY() / (height() - 2 * Margin);
settings.minX = prevSettings.minX + dx * rect.left();
settings.maxX = prevSettings.minX + dx * rect.right();
settings.minY = prevSettings.maxY - dy * rect.bottom();
settings.maxY = prevSettings.maxY - dy * rect.top();
settings.adjust();

zoomStack.resize(curzZoom + 1);
zoomStack.push_back(settings);
zoomIn() ;

}

When the user releases the left mouse button, we erase the rubber band and
restore the standard arrow cursor. If the rubber band is at least 4 x 4, we
perform the zoom. If the rubber band is smaller than that, it’s likely that the
user clicked the widget by mistake or to give it focus, so we do nothing.

Double Buffering 125

The code to perform the zoom is a bit complicated. This is because we deal
with two coordinate systems at the same time: widget coordinates and plotter
coordinates. Most of the work we perform here is to convert the rubberBandrect
from widget coordinates to plotter coordinates.

Once we have done the conversion, we call PlotSettings::adjust() to round
the numbers and find a sensible number of ticks for each axis.

(0,0)

10 - 2.4 6.8

8 (94,73) 8

6 6 - 6.5
///A\\\// 68 .} ///«\\\//

4 4
+—> 3.2

2 135 2

0 T T T T 0 T T T T

0 2 4 6 8 10 0 2 4 6 8 10

Figure 5.13. Converting the rubber band from widget to plotter coordinates

o 20 7.0 .

8_
7.0 6

6_

N\ BIEE

44
3.0

2- a5

0 T T T 3 T T T T

0 2 4 6 8 10 2 3 4 5 6 7

Figure 5.14. Adjusting plotter coordinates and zooming in on the rubber band

Then we perform the zoom. The zoom is achieved by pushing the new plotSet-
tings that we have just calculated on top of the zoom stack and calling zoom-
In() to do the job.

void Plotter::keyPressEvent (QKeyEvent *event)
{
switch (event->key()) {
case Key_Plus:
zoomIn() ;
break;
case Key Minus:
zoomOut () ;
break;
case Key_Left:
zoomStack [curZoom] .scroll (-1, 0);
refreshPixmap () ;

126 5. Creating Custom Widgets

break;

case Key_Right:
zoomStack [curZoom] .scroll (+1, 0);
refreshPixmap() ;
break;

case Key_Down:
zoomStack [curZoom] .scroll (0, -1);
refreshPixmap () ;
break;

case Key_Up:
zoomStack [curZoom] .scroll (0, +1);
refreshPixmap () ;
break;

default:
QWidget::keyPressEvent (event) ;

}

}

When the user presses a key and the Plotter widget has focus, the keypress-
Event () function is called. We reimplement it here to respond to six keys: +, -,
Up, Down, Left, and Right. If the user pressed a key that we are not handling, we
call the base class implementation. For simplicity, we ignore the Shift, Ctrl, and
Alt modifier keys, which are available through QkeyEvent::state().

void Plotter::wheelEvent (QWheelEvent *event)
{

int numDegrees = event->delta() / 8;

int numTicks = numDegrees / 15;

if (event->orientation() == Horizontal)
zoomStack [curzoom] . scroll (numTicks, 0);
else
zoomStack [curzoom] .scroll (0, numTicks);
refreshPixmap () ;

}

Wheel events occur when a mouse wheel is turned. Most mice only provide a
vertical wheel, but some also have a horizontal wheel. Qt supports both kinds
of wheels. Wheel events go to the widget that has the focus. The delta()
function returns the distance the wheel was rotated in eighths of a degree.
Mice typically work in steps of 15 degrees.

The most common use of the wheel mouse is to scroll a scroll bar. When we
subclass Qscrollview (covered in Chapter 6) to provide scroll bars, QScrollview
handles the wheel mouse events automatically, so we don’t need to reimple-
ment wheelEvent () ourselves. Qt classes like QListView, QTable, and QTextEdit
that inherit Qscrol1view also support wheel events without needing addition-
al code.

This finishes the implementation of the event handlers. Now let’s review the
private functions.

void Plotter::updateRubberBandRegion ()
{

QRect rect = rubberBandRect.normalize();

Double Buffering 127

update(rect.left(), rect.top(), rect.width(), 1);

update(rect.left(), rect.top(), 1, rect.height());

update(rect.left(), rect.bottom(), rect.width(), 1);
(0);

update(rect.right(), rect.top(), 1, rect.height()

}

The updateRubberBand() function is called from mousePressEvent (), mouseMove-
Event (), and mouseReleaseEvent () to erase or redraw the rubber band. It con-
sists of four calls to update() that schedule a paint event for the four small
rectangular areas that are covered by the rubber band.

Using NOT to Draw the Rubber Band

A common way to draw a rubber band is to use the NOT (or the XOR) math-
ematical operator, which replaces each pixel value on the rubber band rect-
angle with the opposite bit pattern. Here’s a new version of updateRubber-
BandRegion() that does this:

void Plotter::updateRubberBandRegion ()

{
QPainter painter(this);
painter.setRasterOp (NotROP) ;
painter.drawRect (rubberBandRect.normalize()) ;

}

The setRaster0p() call sets the painter’s raster operation to be NotroP. In the
original version, we kept the default value, copyrRopP, which told Qrainter to
simply copy the new value over the original.

When we call updateRubberBandRegion() a second time with the same
coordinates, the original pixels are restored, since two NOTs cancel each
other out.

The advantage of using NOT is that it’s easy to implement and it eliminates
the need to keep a copy of the covered areas. But it isn’t generally applica-
ble. For example, if we draw text instead of a rubber band, the text could
become very hard to read. Also, NOT doesn’t always produce good contrast;
for example, medium gray stays medium gray. Finally, NOT isn’t supported
on Mac OS X.

Another approach is to render the rubber band as an animated dotted line.
This is often used in image manipulation programs, because it provides
good contrast no matter what colors are found in the image. To do thisin Qt,
the trick is to reimplement Qobject: : timerEvent () to erase the rubber band
and then repaint it but starting drawing the dots at a slightly different
offset each time, producing the illusion of movement.

void Plotter::refreshPixmap()

{
pixmap.resize(size());
pixmap.fill(this, 0, 0);
QPainter painter(&pixmap, this);
drawGrid(&painter) ;

128 5. Creating Custom Widgets

drawCurves (&painter) ;
update() ;
}

The refreshpixmap () function redraws the plot onto the off-screen pixmap and
updates the display.

We resize the pixmap to have the same size as the widget and fill it with the
widget’s erase color. This color is the “dark” component of the palette, because
of the call to setBackgroundMode () in the Plotter constructor.

Then we create a Qpainter to draw on the pixmap and call drawGrid() and
drawCurves () to perform the drawing. At the end, we call update() to schedule
a paint event for the whole widget. The pixmap is copied to the widget in the
paintEvent () function (p. 121)

void Plotter::drawGrid(QPainter *painter)
{
QRect rect(Margin, Margin,
width() - 2 * Margin, height() - 2 * Margin);
PlotSettings settings = zoomStack[curZoom] ;
QPen quiteDark = colorGroup().dark().light();
QPen light = colorGroup().light();

for (int 1 = 0; 1 <= settings.numXTicks; ++1i) {
int x = rect.left() + (i * (rect.width() - 1)
/ settings.numXTicks) ;
double label = settings.minX + (i * settings.spanX()
/ settings.numXTicks);
painter->setPen(quiteDark) ;

painter->drawLine(x, rect.top(), x, rect.bottom());
painter->setPen(light);
painter->drawLine(x, rect.bottom(), x, rect.bottom() + 5);

painter->drawText (x - 50, rect.bottom() + 5, 100, 15,
AlignHCenter | AlignTop,
QString: :number (label));

for (int j = 0; j <= settings.numYTicks; ++j) {
int y = rect.bottom() - (j * (rect.height() - 1)
/ settings.numYTicks);
double label = settings.minY + (j * settings.spanY()
/ settings.numYTicks);
painter->setPen(quiteDark) ;

painter->drawLine(rect.left(), y, rect.right(), y);
painter->setPen(light);

painter->drawLine(rect.left() - 5, y, rect.left(), y);
painter->drawText (rect.left() - Margin, y - 10,

Margin - 5, 20,
AlignRight | AlignVCenter,
QString: :number (label));

}

painter->drawRect (rect) ;

}

The drawGrid() function draws the grid behind the curves and the axes.

Double Buffering 129

The first for loop draws the grid’s vertical lines and the ticks along the x axis.
The second for loop draws the grid’s horizontal lines and the ticks along the
y axis. The drawText () function is used to draw the numbers corresponding to
the tick mark on both axes.

The calls to drawText () have the following syntax:
painter.drawText(x, y, w, h, alignment, text);

where (x, y, w, h) define a rectangle, alignment the position of the text within
that rectangle, and text the text to draw.

void Plotter::drawCurves (QPainter *painter)
{
static const QColor colorForIds[6] = {
red, green, blue, cyan, magenta, yellow
}i
PlotSettings settings = zoomStack[curZoom] ;
QRect rect(Margin, Margin,

width() - 2 * Margin, height() - 2 * Margin);
painter->setClipRect(rect.x() + 1, rect.y() + 1,
rect.width() - 2, rect.height() - 2);
map<int, CurveData>::const_iterator it = curveMap.begin();
while (it != curveMap.end()) {
int id = (*it).first;
const CurveData &data = (*it).second;

int numPoints = 0;
int maxPoints = data.size() / 2;
QPointArray points(maxPoints);

for (int 1 = 0; 1 < maxPoints; ++i) {
double dx = datal[2 * i] - settings.minX;
double dy = data[2 * 1 + 1] - settings.minY;
double x = rect.left() + (dx * (rect.width() -
/ settings.spanX());
double y = rect.bottom() - (dy * (rect.height() - 1)
/ settings.spanY());
if (fabs(x) < 32768 && fabs(y) < 32768) {
points[numPoints] = QPoint((int)x, (int)y);
++numPoints;

1)
)

}
}
points.truncate (numPoints);
painter->setPen(colorForIds[(uint)id % 6]);
painter->drawPolyline(points);
++it;

}

The drawCurves () function draws the curves on top of the grid. We start by
calling setClipRect () to set the Qrpainter’s clip region to the rectangle that con-
tains the curves (excluding the margins). gpainter will then ignore drawing
operations on pixels outside the area.

130 5. Creating Custom Widgets

Next, we iterate over all the curves, and for each curve, we iterate over the (x,y)
coordinate pairs that constitute it. The first member of the iterator’s value
gives us the ID of the curve and the second member gives us the curve data.

The inner part of the for loop converts a coordinate pair from plotter coordi-
nates to widget coordinates and stores it in the points variable, provided that
it lies within reasonable bounds. If the user zoomsin a lot, we could easily end
up with numbers that cannot be represented as 16-bit signed integers, leading
to incorrect rendering by some window systems.

Once we have converted all the points of a curve to widget coordinates, we set
the pen color for the curve (using one of a set of predefined colors) and call
drawpPolyline() to draw a line that goes through all the curve’s points.

This is the complete plotter class. All that remains are a few functions in
PlotSettings.

PlotSettings::PlotSettings()
{

minX = 0.0;
maxX = 10.0;
numXTicks = 5;
minY = 0.0;
maxY = 10.0;

numYTicks = 5;
}

The PlotSettings constructor initializes both axes to the range 0 to 10 with 5
tick marks.

void PlotSettings::scroll(int dx, int dy)
{
double stepX = spanX() / numXTicks;
minX += dx * stepX;
maxX += dx * stepX;

double stepY = spanY() / numYTicks;
minY += dy * stepY;
maxY += dy * stepV;

}

The scroll () function increments (or decrements) minX, maxX, miny, and maxy by
the interval between two ticks times a given number. This function is used to
implement scrolling in Plotter: :keyPressEvent ().

void PlotSettings::adjust()

{
adjustAxis(minX, maxX, numXTicks);
adjustAxis (minY, maxY, numYTicks);

}

The adjust () function is called from mouseReleaseEvent () to round the minx,
maxX, minY, and maxY values to “nice” values and to determine the number of
ticks appropriate for each axis. The private function adjustaxis() does its
work one axis at a time.

Double Buffering 131

void PlotSettings::adjustAxis(double &min, double &max,
int &numTicks)
{
const int MinTicks = 4;
double grossStep = (max - min) / MinTicks;
double step = pow(10, floor(loglO(grossStep)));

if (5 * step < grossStep)

step *= 5;
else if (2 * step < grossStep)
step *= 2;
numTicks = (int) (ceil(max / step) - floor(min / step));

min = floor(min / step) * step;
max = cell(max / step) * step;
}

The adjustAxis() function converts its min and max parameters into “nice’
numbers and sets its numTicks parameter to the number of ticks it calculates
to be appropriate for the given [min, max] range. Because adjustaxis() needs to
modify the actual variables (minX, maxX, numxTicks, etc.) and not just copies, its
parameters are non-const references.

2

Most of the code in adjustaxis () simply attempts to determine an appropriate
value for the interval between two ticks (the “step”). To obtain nice numbers
along the axis, we must select the step with care. For example, a step value of
3.8 would lead to an axis with multiples of 3.8, which is difficult for people to
relate to. For axeslabelled in decimal notation, “nice” step values are numbers
of the form 10", 2-10", or 5-10".

We start by computing the “gross step”, a kind of maximum for the step value.
Then we find the corresponding number of the form 10" that is smaller than
or equal to the gross step. We do this by taking the decimal logarithm of the
gross step, then rounding that value down to a whole number, then raising 10
to the power of this rounded number. For example, if the gross step is 236, we
compute log 236 = 2.37291...; then we round it down to 2 and obtain 10% = 100
as the candidate step value of the form 10".

Once we have the first candidate step value, we can use it to calculate the
other two candidates: 2-10" and 5-10". For the example above, the two other
candidates are 200 and 500. The 500 candidate is larger than the gross step,
so we can’t use it. But 200 is smaller than 236, so we use 200 for the step size
in this example.

It’s fairly easy to derive nunTicks, min, and max from the step value. The new min
value is obtained by rounding the original min down to the nearest multiple
of the step, and the new max value is obtained by rounding up to the nearest
multiple of the step. The new nunTicks is the number of intervals between the
the rounded nin and max values. For example, if minis 240 and max is 1184 upon
entering the function, the new range becomes [200, 1200], with 5 tick marks.

This algorithm will give suboptimal results in some cases. A more sophisti-
cated algorithm is described in Paul S. Heckbert’s article “Nice Numbers for

132 5. Creating Custom Widgets

Graph Labels” published in Graphics Gems (ISBN 0-12-286166-3). Also of
interest is the @t Quarterly article “Fast and Flicker-Free”, available online
at http://doc.trolltech.com/qqa/qq06-flicker-free.html, which presents some
more ideas for eliminating flicker.

This chapter has brought us to the end of Part I. It has explained how to
customize an existing Qt widget and how to build a widget from the ground up
using Qwidget as the base class. We have already seen how to compose a widget
from existing widgets in Chapter 2, and we will explore the theme further in
Chapter 6.

At this point, we know enough to write complete GUI applications using Qt.
In Part I, we will explore Qt in greater depth, so that we can make full use of
Qt’s power.

Part 11

Intermediate Qt

* Basic Layouts

e Splitters

e Widget Stacks

* Scroll Views

* Dock Windows

* Multiple Document Interface

Layout Management

Every widget that is placed on a form must be given an appropriate size and
position. Some large widgets may also need scroll bars to give the user access
to all their contents. In this chapter, we will review the different ways of
laying out widgets on a form, and also see how to implement dockable windows
and MDI windows.

Basic Layouts

Qt provides three basic ways of managing the layout of child widgets on a
form: absolute positioning, manual layout, and layout managers. We will
look at each of these approaches in turn, using the Find File dialog shown in
Figure 6.1 as our example.

® Find Files or Folders 7| -10] x|
Mamed: Iexample." | Fircd I
Loak in: IC:I Stop |
¥ Includde subfolders
Cloze |

Marne In Falder -
@Example.dnc CiMy DocurnentsiMicrosoft Of1
% Example exe C:My Frograms
@ Exarngle htrnl CAlpera\HTML
@ E=amgle html CihTeleARCHK 20200 User\Temp

-

J?Fv:mnln melf M Ak rram A Pieenrnambs
4 4

['8 files found

Help

'

Figure 6.1. The Find File dialog

135

136 6. Layout Management

Absolute positioning is the crudest way of laying out widgets. It is achieved by
assigning hard-coded sizes and positions (geometries) to the form’s child wid-
gets and a fixed size to the form. Here’s what the FindFileDialog constructor
looks like using absolute positioning:

FindFileDialog::FindFileDialog(QWidget *parent, const char *name)
: QDialog(parent, name)

{

namedLabel->setGeometry (10, 10, 50, 20);
namedLineEdit->setGeometry (70, 10, 200, 20);
lookInLabel->setGeometry (10, 35, 50, 20);
lookInLineEdit->setGeometry (70, 35, 200, 20);
subfoldersCheckBox->setGeometry (10, 60, 260, 20);
listView->setGeometry (10, 85, 260, 100);
messageLabel->setGeometry (10, 190, 260, 20);
findButton->setGeometry (275, 10, 80, 25)
stopButton->setGeometry (275, 40, 80, 25);
closeButton->setGeometry (275, 70, 80, 25);
helpButton->setGeometry (275, 185, 80, 25)

I

i

setFixedSize (365, 220);
}

Absolute positioning has many disadvantages. The foremost problem is that
the user cannot resize the window. Another problem is that some text may
be truncated if the user chooses an unusually large font or if the application
is translated into another language. And this approach also requires us to
perform tedious position and size calculations.

An alternative to absolute positioning is manual layout. With manual layout,
the widgets are still given absolute positions, but their sizes are made propor-
tional to the size of the window rather than being entirely hard-coded. This
can be achieved by reimplementing the form’s resizeEvent () function to set its
child widgets’ geometries:

FindFileDialog::FindFileDialog(QWidget *parent, const char *name)
: QDialog(parent, name)

{

setMinimumSize (215, 170);
resize (365, 220);
}

void FindFileDialog::resizeEvent (QResizeEvent *)
{
int extraWidth = width() - minimumWidth();
int extraHeight = height() - minimumHeight();

namedLabel->setGeometry (10, 10, 50, 20);
namedLineEdit->setGeometry (70, 10, 50 + extrawWidth, 20);
lookInLabel->setGeometry (10, 35, 50, 20);
lookInLineEdit->setGeometry (70, 35, 50 + extraWidth, 20);
subfoldersCheckBox->setGeometry (10, 60, 110 + extraWidth, 20);

Basic Layouts 137

listView->setGeometry (10, 85,
110 + extraWidth, 50 + extraHeight);

messageLabel->setGeometry (10, 140 + extraHeight,

110 + extraWidth, 20);
findButton->setGeometry (125 + extraWidth, 10, 80, 25);
stopButton->setGeometry (125 + extraWidth, 40, 80, 25);
closeButton->setGeometry (125 + extraWidth, 70, 80, 25);
helpButton->setGeometry (125 + extraWidth, 135 + extraHeight,

80, 25);
}

We set the form’s minimum size to 215 x 170 in the FindFileDialog constructor
and its initial size to 365 x 220. In the resizeEvent () function, we give any
extra space to the widgets that we want to grow.

Just like absolute positioning, manual layout requires a lot of hard-coded con-
stants to be calculated by the programmer. Writing code like this is tiresome,
especially if the design changes. And there is still the risk of text truncation.
The risk can be avoided by taking account of the child widgets’ size hints, but
that would complicate the code even further.

Find Files or Folders zl-100 x| ®. Find Files or Folders zl=10xI
Hamed: [esample.* [e] Homed: [ezxample.* [e]
Loak in: |C:\ Stop Look in: |C il Stop
¥ Include subfolders ¥ Include subfolders

Close Close
Name In Foler = [1ame In Folder Size [
] Excample.doc by Dot] Excample. dac Ty Documentsihicrosoft Office 29 KB
€% Example exe CiiMy Pra 5% Exampie ere Ty Programs 542 KB
@ Example itml COperal @ Examplehtml CADperaHTML 4KB
ﬁ :V,T.A bl mlnyll Q] Examnple il C:\Tele MARCK 2020Wser Templates 22 KB
e |0 Example pelf C\bcroreachDocumerts 154 KB
8 files found g Example. <l My DocumnentsiMicrosoft Office 2 KB
example hir Wy DocunmentsiTutorials 12 KB
@example ovi Wy DocumentsilaTe # 243 KB
1| | |
[files found (il

Figure 6.2. Resizing a resizable dialog

The best solution for laying out widgets on a form is to use Qt’s layout man-
agers. The layout managers provide sensible defaults for every type of widget
and take into account each widget’s size hint, which in turn typically depends
on the widget’s font, style, and contents. Layout managers also respect mini-
mum and maximum sizes, and automatically adjust the layout in response to
font changes, text changes, and window resizing.

Qt provides three layout managers: QHBoxLayout, QVBoxLayout, and QGridLayout.
These classes inherit QLayout, which provides the basic framework for layouts.
All three classes are fully supported by @t Designer and can also be used in
code. Chapter 2 presented examples of both approaches.

Here’s the FindrileDialog code using layout managers:

FindFileDialog::FindFileDialog(QWidget *parent, const char *name)
QDialog(parent, name)

{

138 6. Layout Management

QGridLayout *leftLayout = new QGridLayout;
leftLayout->addWidget (namedLabel, 0, 0);

leftLayout->addWidget (namedLineEdit, 0, 1);
leftLayout->addWidget (lookInLabel, 1, 0);

leftLayout->addWidget (lookInLineEdit, 1, 1);
leftLayout->addMultiCellWidget (subfoldersCheckBox, 2, 2, 0, 1);
leftLayout->addMultiCellWidget (listView, 3, 3, 0, 1);
leftLayout->addMultiCellWidget (messageLabel, 4, 4, 0, 1);

QVBoxLayout *rightLayout = new QVBoxLayout;
rightLayout->addwidget (findButton) ;
rightLayout->addWidget (stopButton) ;
rightLayout->addWidget (closeButton) ;
rightLayout->addStretch(1);
rightLayout->addWidget (helpButton) ;

QHBoxLayout *mainLayout = new QHBoxLayout (this);
mainLayout->setMargin(11);
mainLayout->setSpacing(6) ;

mainLayout->addLayout (leftLayout) ;
mainLayout->addLayout (rightLayout) ;

}

The layout is handled by one QHBoxLayout, one QGridLayout, and one QVBoxLay-
out. The Q¢ridlayout on the left and the QvBoxLayout on the right are placed
side by side by the outer gHBoxLayout. The margin around the dialog is 11 pixels
and the spacing between the child widgets is 6 pixels.

'1| QLabel QLineEdit | | i [QPushButton | |
mainLayout >
1| QLabel QLineEdit 11| QPushButton | ; |
¥ QCheckBox | QPushButton | | |!
leftLayout > o <«—+— rightLayout
QListView
QLabel 1| QPushButton | !

Figure 6.3. The Find File dialog’s layout

QGridLayout works on a two-dimensional grid of cells. The QLabel at the top-left
corner of the layout is at position (0, 0), and the corresponding QLineEdit is

Basic Layouts 139

at position (0, 1). The QCheckBox spans two columns; it occupies the cells in
positions (2, 0) and (2, 1). The QListView and the QLabel beneath it also span
two columns. The calls to addMulticellWidget () have the following syntax:

leftLayout->addMultiCellWidget (widget, rowl, row2, coll, col2);

where widget is the child widget to insert into the layout, (rowl, col1) is the
top-left cell occupied by the widget, and (row2, col12) is the bottom-right cell
occupied by the widget.

The same dialog could be created visually in @t Designer by placing the child
widgets in their approximate positions, selecting those that need to be laid
out together, and clicking Layout|Lay Out Horizontally, Layout|Lay Out Vertically, or
Layout|Lay Out in a Grid. We used this approach in Chapter 2 for creating the
Spreadsheet application’s Go-to-Cell and Sort dialogs.

Using layout managers provides additional benefits to those we have discussed
so far. If we add a widget to a layout or remove a widget from a layout, the
layout will automatically adapt to the new situation. The same applies if we
call hide() or show() on a child widget. If a child widget’s size hint changes,
the layout will be automatically redone, taking into account the new size hint.
Also, layout managers automatically set a minimum size for the form as a
whole, based on the form’s child widgets’ minimum sizes and size hints.

In every example presented so far, we have simply put the widgets in layouts,
with spacer items to consume any excess space. Sometimes thisisn’t sufficient
to make the layout look exactly the way we want. In such situations, we can
adjust the layout by changing the size policies and size hints of the widgets
being laid out.

A widget’s size policy tells the layout system how it should stretch or shrink.
Qt provides sensible default size policy values for all its built-in widgets,
but since no single default can account for every possible layout, it is still
common for developers to change the size policies for one or two widgets on a
form. A size policy has both a horizontal and a vertical component. The most
useful values for each component are Fixed, Minimum, Maximum, Preferred, and
Expanding:

* rixed means that the widget cannot grow or shrink. The widget always
stays at the size of its size hint.

* Minimum means that the widget’s size hint is its minimum size. The widget
cannot shrink below the size hint, but it can grow to fill available space
if necessary.

* Maximum means that the widget’s size hint is its maximum size. The widget
can be shrunk down to its minimum size hint.

* preferred means that the widget’s size hint is its preferred size, but that
the widget can still shrink or grow if necessary.

* Expanding means that the widget can shrink or grow and that it is espe-
cially willing to grow.

140 6. Layout Management

Figure 6.4 summarizes the meaning of the different size policies, using a
QLabel showing the text “Some Text” as an example.

min size hint size hint
le——>1

Fixed
Minimum — ‘Some Text ‘
Maximum «—
Preferred “«—> «— ‘Some Text ‘
Expanding «—> «—> ‘Some Text ‘

Figure 6.4. The meaning of the different size policies

When a form that contains both pPreferred and Expanding widgets is resized,
extra space is given to the Expanding widgets, while the preferred widgets stay
at their size hint.

There are two other size policies: MinimumExpanding and Ignored. The former
was necessary in a few rare cases in older versions of Qt, but it isn’t useful
any more; a better approach is to use Expanding and reimplement minimumSize-
Hint () appropriately. The latter is similar to Expanding, except that it ignores
the widget’s size hint.

In addition to the size policy’s horizontal and vertical components, the QSize-
Policy class stores both a horizontal and a vertical stretch factor. These stretch
factors can be used to indicate that different child widgets should grow at
different rates when the form expands. For example, if we have a QListView
above a QTextEdit and we want the QTextEdit to be twice as tall as the QList-
View, we can set the QTextEdit’s vertical stretch factor to 2 and the QListview's
vertical stretch factor to 1.

Another way of influencing a layout is to set a minimum size, a maximum
size, or a fixed size on the child widgets. The layout manager will respect
these constraints when laying out the widgets. And if this isn’t sufficient, we
can always derive from the child widget’s class and reimplement sizeHint () to
obtain the size hint we need.

Splitters

A splitter is a widget that contains other widgets and that separates them
with splitter handles. Users can change the sizes of a splitter’s child widgets
by dragging the handles. Splitters can often be used as an alternative to layout
managers, to give more control to the user.

Qt supports splitters with the Qsplitter widget. The child widgets of a
QSplitter are automatically placed side by side (or one below the other) in the

Splitters 141

order in which they are created, with splitter bars between adjacent widgets.
Here’s the code for creating the window depicted in Figure 6.5:

#include <gapplication.h>
#include <gsplitter.h>
#include <gtextedit.h>

int main(int argc, char *argvl[])

{

}

QApplication app(argc, argv);

QSplitter splitter(Qt::Horizontal);
splitter.setCaption(QObject::tr("Splitter"));
app.setMainWidget (&splitter);

QTextEdit *firstEditor = new QTextEdit(&splitter);
QTextEdit *secondEditor = new QTextEdit(&splitter);
QTextEdit *thirdEditor = new QTextEdit(&splitter);

splitter.show();
return app.exec();

The example consists of three QTextEdits laid out horizontally by a QSplitter
widget. Unlike layout managers, which simply lay out a form’s child widgets,
QSplitter inherits from Qwidget and can be used like any other widget.

| Caption

QSplitter

QTextEdit QTextEdit QTextEdit

Figure 6.5. The Splitter application’s widgets

A gsplitter canlay outits child widgets either horizontally or vertically. Com-
plex layouts can be achieved by nesting horizontal and vertical Qsplitters. For
example, the Mail Client application shown in Figure 6.6 consists of a horizon-
tal gsplitter that contains a vertical QSplitter on its right side.

Here’s the code in the constructor of the Mail Client application’s QMainWindow
subclass:

MailClient::MailClient (QWidget *parent, const char *name)

{

: QMainWindow(parent, name)

horizontalSplitter = new QSplitter(Horizontal, this);
setCentralWidget (horizontalSplitter);

foldersListView = new QListView(horizontalSplitter);
foldersListView->addColumn(tr ("Folders"));
foldersListView->setResizeMode (QListView: :Al1Columns) ;

142 6. Layout Management

verticalSplitter = new QSplitter(Vertical, horizontalSplitter);

messagesListView = new QListView(verticalSplitter);
messagesListView->addColumn(tr ("Subject"));
messagesListView->addColumn (tr ("Sender")) ;
messagesListView->addColumn(tr ("Date"));
messagesListView->setAllColumnsShowFocus (true) ;
messagesListView->setShowSortIndicator(true);
messagesListView->setResizeMode (QListView: :Al1Columns) ;

textEdit = new QTextEdit(verticalSplitter);
textEdit->setReadOnly(true) ;

horizontalSplitter->setResizeMode(foldersListView,
QSplitter::KeepSize);
verticalSplitter->setResizeMode (messagesListView,
QSplitter::KeepSize);

readSettings();
}

We create the horizontal 0Splitter first and set it to be the QMainwWindow’s
central widget. Then we create the child widgets and their child widgets.

606 Mail Client: Happy New Year!
Y, e ¥

BIEEREEEEIERM™

| Folders Subject = |Sender = |oEe

Mail Expenses Joe Bloggs <joe@... 2001-12-25
@Inbox Accounts pascale@nospam.... 2001-12-31
Soutbox Happy New Year! Linda K. <linda@... 2001-12-31 @
@sent—mail Re: Expenses Andy <andy@nos... 2002-01-02 &
fitrash Re: Accounts Andy <andy@nos... 2002-01-03 v

Subject: Happy New Year!
Date: Mon, 31 Dec 2001
From: Linda K. <linda@software-inc.com:>
To: all@software-inc.com

| want to seize this occasion to thank everybody for the
year that has gone, and want to wish you the best for
next year. It has been a pleasure to work with you all on
the Hawk project, and I'm sure we'll get concrete results
shortly.

Happy New Year!
--Linda

A
T —

Figure 6.6. The Mail Client application on Mac OS X

When the user resizes a window, QSplitter normally distributes the space so
that the relative sizes of the child widgets stay the same. In the Mail Client
example, we don’t want this behavior; instead we want the two QListViews to
maintain their size and we want to give any extra space to the QTextEdit. This
is achieved by the two setResizeMode () calls near the end.

Splitters 143

When the application is started, 0Splitter gives the child widgets appropriate
sizes based on their initial sizes. We can move the splitter handles program-
matically by calling osplitter::setSizes(). The QSplitter class also provides
a means of saving and restoring its state the next time the application is run.
Here’s the writeSettings () function that saves the Mail Client’s settings:

void MailClient::writeSettings()

{
QSettings settings;
settings.setPath("software-inc.com", "MailClient");
settings.beginGroup("/MailClient");

QString str;

QTextOStream outl(&str);

outl << *horizontalSplitter;
settings.writeEntry("/horizontalSplitter", str);
QTextOStream out2 (&str);

out2 << *verticalSplitter;
settings.writeEntry("/verticalSplitter", str);

settings.endGroup|();

}
Here’s the corresponding readsettings () function:

void MailClient::readSettings()

{
QSettings settings;
settings.setPath("software-inc.com", "MailClient");
settings.beginGroup("/MailClient") ;

QString strl = settings.readEntry("/horizontalSplitter");
QTextIStream inl (&strl);

inl >> *horizontalSplitter;

QString str2 = settings.readEntry("/verticalSplitter");
QTextIStream in2(&str2);

in2 >> *verticalSplitter;

settings.endGroup() ;
}

These functions rely on QTextIStream and QTextOStream, two QTextStream
convenience subclasses.

By default, a splitter handle is shown as a rubber band while the user is
dragging it, and the widgets on either side of the splitter handle are resized
only when the user releases the mouse button. To make QSplitter resize the
child widgets in real time, we would call setOpaqueResize(true).

osplitterisfully supported by @t Designer. To put widgetsinto a splitter, place
the child widgets approximately in their desired positions, select them, and
click Layout|Lay Out Horizontally (in Splitter) or Layout|Lay Out Vertically (in Splitter).

144 6. Layout Management

Widget Stacks

Another useful widget for managing layouts is QwidgetStack. This widget
contains a set of child widgets, or “pages”, and shows only one at a time, hiding
the others from the user. The pages are numbered from 0. If we want to make
a specific child widget visible, we can call raisenidget () with either a page
number or a pointer to the child widget.

1
Owner: IAdministratu:ur ;l

[+ Eead-only
[~ Hidden

Figure 6.7. QWidgetStack
The gwidgetStack itself is invisible and provides no intrinsic means for the

user to change page. The small arrows and the dark gray frame in Figure 6.7
are provided by @t Designer to make the QwidgetStack easier to design with.

& Configure Mail Client 2 |- 10] x|

dentity Narne: |Peter Wacden
Appearance o
7 Organization: SGoftware Inc.
Metwark = I
,ﬁ-?} Cormposer Ernail Address: Ipeter@snftware-inc.cu:um
E Security

EBeply-To Address: |

OpenF GF Key: |E58E1 T
Signature File: Isignature.txt Browse... |

@ Mizcellaneous

Figure 6.8. The Configure dialog

The Configure dialog shown in Figure 6.8 is an example that uses Qwidget-
stack. The dialog consists of a QListBox on the left and a QwidgetStack on the
right. Each item in the QListBox corresponds to a different page in the gwid-
getStack. Forms like this are very easy to create using @t Designer:

Widget Stacks 145

1. Create a new form based on the “Dialog” or the “Widget” template.
2. Add a list box and a widget stack to the form.

3. Fill each widget stack page with child widgets and layouts.
(To create a new page, right-click and choose Add Page; to switch pages,
click the tiny left or right arrow located at the top-right of the widget
stack.)

4. Lay the widgets out side by side using a horizontal layout.

5. Connect the list box’s highlighted(int) signal to the widget stack’s
raiseWidget (int) slot.

6. Set the value of the list box’s currentItem property to O.

Since we have implemented page-switching using predefined signals and slots,
the dialog will exhibit the correct page-switching behavior when previewed in
Qt Designer.

Scroll Views

The Qscrollview class provides a scrollable viewport, two scroll bars, and a
“corner” widget (usually an empty Qwidget). If we want to add scroll bars to
a widget, it is much simpler to use a QScrollview than to instantiate our own
QScrollBars and implement the scrolling functionality ourselves.

H
o
o
viewport() 3
©
.0
o
>
horizontalScrollbar() «—cornerWidget()

Figure 6.9. QScrollview’s constituent widgets

The easiest way to use QScrollview is to call addchild() with the widget we
want to add scroll bars to. QScrollview automatically reparents the widget to
make it a child of the viewport (accessible through QScrollview: :viewport())
if it isn’t already. For example, if we want scroll bars around the IconEditor
widget we developed in Chapter 5, we can write this:

#include <gapplication.h>
#include <gscrollview.h>

#include "iconeditor.h"

int main(int argc, char *argvl[])

{

146 6. Layout Management

QApplication app(argc, argv);

QScrollview scrollView;
scrollView.setCaption(QObject::tr("Icon Editor"));
app.setMainWidget (&scrollView) ;

IconEditor *iconEditor = new IconEditor;
scrollView.addChild(iconEditor) ;

scrollView.show() ;
return app.exec();

}

By default, the scroll bars are only displayed when the viewport is smaller
than the child widget. We can force the scroll bars to always be shown by
writing this code:

scrollView.setHScrollBarMode (QScrollView: :AlwaysOn) ;
scrollView.setVScrollBarMode (QScrollView: :AlwaysOn) ;

When the child widget’s size hint changes, QScrol1view automatically adapts
to the new size hint.

Figure 6.10. Resizing a QScrollView

An alternative way of using a QScrollview with a widget is to make the widget
inherit QScrollview and to reimplement drawContents () to draw the contents.
This is the approach used by Qt classes like QIconvView, QListBox, QListView,
QTable, and QTextEdit. If a widget is likely to require scroll bars, it’s usually a
good idea to implement it as a subclass of QScrollview.

To show how this works, we will implement a new version of the IconEditor
class as a QScrollview subclass. We will call the new class ImageEditor, since
its scroll bars make it capable of handling large images.

#ifndef IMAGEEDITOR_H
#define IMAGEEDITOR_H

#include <gimage.h>
#include <gscrollview.h>

Scroll Views 147

class ImageEditor : public QScrollView
{
Q_OBJECT
Q_PROPERTY (QColor penColor READ penColor WRITE setPenColor)
Q_PROPERTY (QImage image READ image WRITE setImage)
Q_PROPERTY (int zoomFactor READ zoomFactor WRITE setZoomFactor)

public:
ImageEditor (QWidget *parent = 0, const char *name = 0);

void setPenColor(const QColor &newColor);

QColor penColor() const { return curColor; }
void setZoomFactor (int newZoom) ;

int zoomFactor() const { return zoom; }

void setImage(const QImage &newlImage) ;

const QImage &image() const { return curImage; }

protected:
void contentsMousePressEvent (QMouseEvent *event);
void contentsMouseMoveEvent (QMouseEvent *event);
void drawContents(QPainter *painter, int x, int y,
int width, int height);

private:
void drawImagePixel (QPainter *painter, int i, int j);
void setImagePixel (const QPoint &pos, bool opaque);
void resizeContents();

QColor curColor;
QImage curlmage;
int zoom;

i
#endif

The header file is very similar to the original (p. 100). The main difference is
that we inherit from 0Scrollviewinstead of Qwidget. We will run into the other
differences as we review the class’s implementation.

ImageEditor::ImageEditor (QWidget *parent, const char *name)
QScrollview(parent, name, WStaticContents | WNoAutoErase)

{

curColor = black;

zoom = 8;

curImage.create(16, 16, 32);

curImage.fill(gRgba(0, 0, 0, 0));

curImage.setAlphaBuffer(true);

resizeContents () ;

}

The constructor passes the WStaticContents and WNoAutoErase flags to the
Qscrollview. These flags are actually set on the viewport. We don’t set a size
policy, because gscrollviews default of (Expanding, Expanding) is appropriate.

In the original version, we didn’t call updateGeometry() in the constructor
because we could depend on Qt’slayout managers picking up the initial widget

148 6. Layout Management

size by themselves. But here we must give the Qscrol1viewbase class an initial
size to work with, and we do this with the resizeContents () call.

void ImageEditor::resizeContents()

{
QSize size = zoom * curImage.size();
if (zoom >= 3)
size += QSize(1l, 1);
QScrollvView::resizeContents(size.width(), size.height());

}

The resizeContents() private function calls QScrollview::resizeContents ()
with the size of the content part of the QScrol1view. The QScrollview displays
scroll bars depending on the content’s size in relation to the viewport’s size.

We don’t need to reimplement sizeHint(); QScrollViews version uses the
content’s size to provide a reasonable size hint.

void ImageEditor::setImage(const QImage &newlImage)

{
if (newImage != curlImage) {
curImage = newlImage.convertDepth(32);
curImage.detach();
resizeContents();
updateContents () ;

}

In many of the original IconEditor functions, we called update() to schedule
a repaint and updateGeometry() to propagate a size hint change. In the
QScrollvView versions, these calls are replaced by resizeContents() to inform
the Qscrollview about a change of the content’s size and updateContents() to
force a repaint.

void ImageEditor::drawContents(QPainter *painter, int, int, int, int)
{
if (zoom >= 3) {
painter->setPen(colorGroup () .foreground()) ;
for (int i = 0; 1 <= curlmage.width(); ++1i)
painter->drawLine(zoom * i, 0,
zoom * i, zoom * curImage.height());

for (int j = 0; j <= curImage.height(); ++3j)
painter->drawLine(0, zoom * j,
zoom * curlImage.width(), zoom * j);
}
for (int 1 = 0; 1 < curImage.width(); ++i) {
for (int j = 0; j < curImage.height(); ++j)

drawImagePixel (painter, i, j);

}

The drawContents () function is called by QScrollview to repaint the content’s
area. The Qrainter object is already initialized to account for the scrolling

Scroll Views 149

offset. We just need to perform the drawing as we normally do in a paint-
Event ().

The second, third, fourth, and fifth parameters specify the rectangle that must
be redrawn. We could use this information to only draw the rectangle that
needs repainting, but for the sake of simplicity we redraw everything.

The drawImagePixel() function that is called near the end of drawContents()
is essentially the same as in the original IconEditor class (p. 106), so it is not
reproduced here.

void ImageEditor::contentsMousePressEvent (QMouseEvent *event)
{

if (event->button() == LeftButton)
setImagePixel (event->pos(), true);

else if (event->button() == RightButton)
setImagePixel (event->pos(), false);

}

void ImageEditor::contentsMouseMoveEvent (QMouseEvent *event)

{
if (event->state() & LeftButton)

setImagePixel (event->pos(), true);
else if (event->state() & RightButton)
setImagePixel (event->pos(), false);

}

Mouse events for the content part of the scroll view can be handled by reim-
plementing special event handlers in QScrollview, whose names all start
with contents. Behind the scenes, QScrollview automatically converts the
viewport coordinates to content coordinates, so we don’t need to convert them
ourselves.

void ImageEditor::setImagePixel (const QPoint &pos, bool opaque)
{

int 1 = pos.x() / zoom;

int j = pos.y() / zoom;

if (curImage.rect().contains(i, j)) {
if (opaque)
curImage.setPixel (i, j, penColor().rgb());
else
curImage.setPixel (i, j, qRgba(0, 0, 0, 0));

QPainter painter(viewport());
painter.translate(-contentsX(), -contentsY());
drawImagePixel (&painter, 1, j);

}

The setImagePixel() function is called from contentsMousePressEvent() and
contentsMouseMoveEvent () to set or clear a pixel. The code is almost the same
as the original version, except for the way the Qrainter object is initialized.
We pass viewport () as the parent because the painting is performed on the

150 6. Layout Management

viewport, and we translate the Qrainter’s coordinate system to account for the
scrolling offset.

We could replace the three lines that deal with the Qpainter with this line:
updateContents (i * zoom, j * zoom, zoom, zoom);

This would tell gScrollview to update only the small rectangular area occupied
by the (zoomed) image pixel. But since we didn’t optimize drawContents ()
to draw only the necessary area, this would be inefficient, so it’s better to
construct a QPainter and do the painting ourselves.

If we use ImageEditor now, it is practically indistinguishable from the origi-
nal, QWidget-based IconEditor used inside a QScrollview widget. However, for
certain more sophisticated widgets, subclassing QScrollview is the more nat-
ural approach. For example, a class such as QTextEdit that implements word-
wrapping needs tight integration between the document that is shown and the
QScrollView.

Also note that you should subclass Qscrollview if the contents are likely to be
very tall or wide, because some window systems don’t support widgets that are
larger than 32,767 pixels.

One thing that the ImageEditor example doesn’t demonstrate is that we can
put child widgets in the viewport area. The child widgets simply need to be
added using addwidget (), and can be moved using moveWidget (). Whenever
the user scrolls the content area, QScrollview automatically moves the child
widgets on screen. (If the QScrollview contains many child widgets, this can
slow down scrolling. We can call enableClipper(true) to optimize this case.)
One example where this approach would make sense is for a web browser.
Most of the contents would be drawn directly on the viewport, but buttons and
other form-entry elements would be represented by child widgets.

Dock Windows

Dock windows are windows that can be docked in dock areas. Toolbars are the
primary example of dock windows, but there can be other types.

QMainWindow provides four dock areas: one above, one below, one to the left, and
one to the right of the window’s central widget. When we create QToolBars,
they automatically put themselves in their parent’s top dock area.

IHeretica L||‘° ﬂ B I U

Figure 6.11. Floating dock windows

Every dock window has a handle. This appears as two gray lines at the left or
top of each dock window shown in Figure 6.12. Users can move dock windows
from one dock area to another by dragging the handle. They can also detach a

Dock Windows 151

dock window from an area and let the dock window float as a top-level window
by dragging the dock window outside of any dock area. Free floating dock
windows have their own caption, and can have a close button. They are always
“on top” of their main window.

Ele go!lit \I_uﬁ:a\ltv Tio Setfings Help

DS H2RD@®|R &

- IIEEEEN —
.
I
I
I
[.
I
I
N .

Ready A

Figure 6.12. A QMainWindow with five dock windows
To turn on the close button when the dock window is floating, call setClose-
Mode () as follows:

dockWindow->setCloseMode (QDockWindow: : Undocked) ;

QDockArea provides a context menu with the list of all dock windows and
toolbars. Once a dock window is closed, the user can restore it using the
context menu.

k. Faette

File
Edlit

v
v
; ey
v

Drawing Operations

Lire up

Figure 6.13. A QDockArea context menu

Dock windows must be subclasses of gbockwWindow. If we just need a toolbar
with buttons and some other widgets, we can use QToolBar, which inherits
QDockWindow. Here’s how to create a QToolBar containing a QComboBox, a QSpinBox,
and some toolbar buttons, and how to put it in the bottom dock area:

QToolBar *toolBar = new QToolBar(tr("Font"), this);
QComboBox *fontComboBox = new QComboBox(true, toolBar);

152 6. Layout Management

QSpinBox *fontSize = new QSpinBox(toolBar);
boldAct->addTo (toolBar) ;
italicAct->addTo(toolBar) ;
underlineAct->addTo(toolBar) ;
moveDockWindow (toolBar, DockBottom) ;

This toolbar would look ugly if the user moves it to a gMainWindow's left or
right dock areas because the QComboBox and the QSpinBox require too much
horizontal space. To prevent this from happening, we can call gMainwindow: :
setDockEnabled () as follows:

setDockEnabled(toolBar, DockLeft, false);
setDockEnabled(toolBar, DockRight, false);

If what we need is something more like a floating widget or tool palette, we
can use QDockWindow directly, by calling setwidget () to set the widget to be
shown inside the QDockwindow. The widget can be as complicated as we like. If
we want the user to be able to resize the dock window even when it’s in a dock
area, we can call setResizeEnabled() on the dock window. The dock window
will then be rendered with a splitter-like handle on the side.

If we want the widget to change itself depending on whether it is put in
a horizontal or in a vertical dock area, we can reimplement QDockWindow: :
setOrientation() and change it there.

If we want to save the position of all the toolbars and other dock windows so
that we can restore them the next time the application is run, we can write
code that is similar to the code we used to save a Qsplitter’s state (p. 143),
using QMainWindow's << operator to write out the state and QMainwindow's >>
operator to read it back in.

Applications like Microsoft Visual Studio and Q¢ Designer make extensive use
of dock windows to provide a very flexible user interface. In Qt, this kind of
user interface is usually achieved by using a QMainWindow with many custom
QDockWindows and a QWorkspace in the middle to control MDI child windows.

Multiple Document Interface

Applications that provide multiple documents within the main window’s
central area are called MDI (multiple document interface) applications. In
Qt, an MDI application is created by using the QWorkspace class as the central
widget and by making each document window a child of the QwWorkspace.

It is conventional for MDI applications to provide a Windows menu that
includes some commands for managing the windows and the list of windows.
The active window is identified with a checkmark. The user can make any
window active by clicking its entry in the Windows menu.

In this section, we will develop the Editor application shown in Figure 6.14
to demonstrate how to create an MDI application and how to implement its
Windows menu.

Multiple Document Interface

153

Last upclate: August 9, 2002
Directiores

To use Loki, simply extract the fies from the :
andl includ: thern appropriately in your code v

If o) use the smal chject allocatar directl or|
st askdl SmallObj.cpp to your projestimakei

If you use: Singletons with longevity you must
Compatisilty

Loki has been tested with Metrowerks Code'|
a broblem with the Conversion template (see
doesn't provide correct results. Consecuently
does not function. This affects the static disn
arder the types fputting the most derived om
argument to Static Dispateher.

Also. Loki has been ported to c++ 2.95.3 by

Generated automatically from Makefile in by configure:
*

Maketlle

*

Copyright (C) 1997 - 2001 Heinz Mauelshagen, Sistina Software
#

Februzry 1987

May 1988

Februzry 2001

#

1V i3 free sOftware; you can recistrioute it andior modity

#1tuncier the terms of the GNU General Public License as published by
#1he Fres Saftware Founciation; sither version 2, or (at your optian}
#any later versian

#

#lvmis distriauted in the hope that it will be useful,

#but WITHOUT ANY WARRANTY; without even the implied warranty of
+ [EEERPEGMIE] o FITNESS FOR & PARTICULAR PURPOSE. See the
GHU General Public License for more details

#
#"ou should have received a copy of the GNU General Fublic License
#3along with GNU CC; see the file COPVING, If not, write to

#the Free Software Founciation, 59 Temple Place - Suite 330,

Boston, MAO2111-1307, US4,

UI FE [

Figure 6.14. The Editor application

The application consists of two classes: MainWindow and Editor. Its code is
on the CD, and since most of it is the same or similar to the Spreadsheet
application from Part I, we will only present the new code.

Windows Help

File: ’E
D My Ctrlel K Cut Cirle® Close Ctrl+Fg About
@ Open... Ctr+0 @ Copy CitHC Close &l s
Save Chks (@Y poste ctriev g;cade
Save &3 R oot e hext Citrl+FB
Exit CHri+Gl Frevious Ctrl+ Shift+F5
|7 1 reacdme. txt
2 Makefile
3 document3 txt

Figure 6.15. The Editor application’s menus

Let’s start with the Mainwindow class.

MainWindow: :MainWindow (QWidget *parent, const char *name)
: QMainWindow(parent, name)

workspace = new QWorkspace(this);

setCentralWidget (workspace) ;

connect (workspace, SIGNAL(windowActivated(QWidget *)),
this, SLOT(updateMenus()));

connect (workspace, SIGNAL(windowActivated(QWidget *)),
this, SLOT(updateModIndicator()));

createActions();
createMenus () ;
createToolBars () ;

154 6. Layout Management

createStatusBar() ;

setCaption(tr("Editor"));
setIcon(QPixmap::fromMimeSource("icon.png"));

}

In the Mainwindow constructor, we create a QuWorkspace widget and make it the
central widget. We connect the QwWorkspace’s windowActivated() signal to two
private slots. These slots ensure that the menus and the status bar always
reflect the state of the currently active child window.

void MainWindow: :newFile()

{
Editor *editor = createEditor();
editor->newFile();
editor->show() ;

}

The newFile() slot corresponds to the File|[New menu option. It depends on the
createEditor () private function to create a child Editor window.

Editor *MainWindow::createEditor()
{
Editor *editor = new Editor(workspace);
connect (editor, SIGNAL(copyAvailable(bool)),
this, SLOT(copyAvailable(bool)));
connect (editor, SIGNAL(modificationChanged (bool)),
this, SLOT(updateModIndicator()));
return editor;

}

The createEditor() function creates an Editor widget and sets up two
signal-slot connections. The first connection ensures that Edit|Cut and Edit|
Copy are enabled or disabled depending on whether there is any selected text.
The second connection ensures that the MOD indicator in the status bar is al-
ways up to date.

Because we are using MDI, it is possible that there will be multiple Editor
widgets in use. This is a concern since we are only interested in responding
to the copyAvailable(bool) and modificationChanged() signals from the active
Editor window, not from the others. But these signals can only ever be emitted
by the active window, so this isn’t really a problem.

void MainWindow: :open/()
{
Editor *editor = createEditor();
if (editor->open())
editor->show() ;
else
editor->close();

}

The open() function corresponds to File|Open. It creates a new Editor for the
new document and calls open() on the Editor. It makes more sense to imple-
ment the file operations in the Editor class than in the MainwWindow class, be-

Multiple Document Interface 155

cause each Editor needs to maintain its own independent state. If the open()
fails, we simply close the editor since the user will have already been notified
of the error.

void MainWindow: :save()

{

if (activeEditor()) {
activeEditor()->save();
updateModIndicator();

}

The save() slot calls save () on the active editor, if there is one. Again, the code
that performs the real work is located in the Editor class.

Editor *MainWindow::activeEditor()
{
return (Editor *)workspace->activeWindow();

}

The activeEditor() private function returns the active child window as an
Editor pointer.

void MainWindow: :cut ()
{
if (activeEditor())
activeEditor()->cut();

}

The cut () slot calls cut () on the active editor. The copy(), paste(), and del()
slots follow the same pattern.

void MainWindow: :updateMenus ()

{
bool hasEditor = (activeEditor() != 0);
saveAct->setEnabled (hasEditor) ;
saveAsAct->setEnabled (hasEditor) ;
pasteAct->setEnabled (hasEditor) ;
deleteAct->setEnabled(hasEditor);
copyAvailable(activeEditor ()

&& activeEditor()->hasSelectedText());
closeAct->setEnabled (hasEditor) ;
closeAllAct->setEnabled(hasEditor);
tileAct->setEnabled(hasEditor);
cascadeAct->setEnabled(hasEditor);
nextAct->setEnabled(hasEditor) ;
previousAct->setEnabled (hasEditor);

windowsMenu->clear () ;
createWindowsMenu() ;
}

The updateMenus () slot is called whenever a window is activated (or when the
last window is closed) to update the menu system, thanks to the signal-slot
connection we put in the Mainwindow constructor.

156 6. Layout Management

Most menu options only make sense if there is an active window, so we disable
them if there isn’t one. Then we clear the Windows menu and call createwin-
dowsMenu () to reinitialize it with a fresh list of child windows.

void MainWindow::createWindowsMenu ()

{
closeAct->addTo (windowsMenu) ;
closeAllAct->addTo (windowsMenu) ;
windowsMenu->insertSeparator() ;
tileAct->addTo (windowsMenu) ;
cascadeAct->addTo (windowsMenu) ;
windowsMenu->insertSeparator() ;
nextAct->addTo (windowsMenu) ;
previousAct->addTo (windowsMenu) ;

if (activeEditor()) f{
windowsMenu->insertSeparator() ;
windows = workspace->windowList();
int numVisibleEditors = 0;

for (int i = 0; 1 < (int)windows.count(); ++1i) {
QWidget *win = windows.at(i);
if (!win->isHidden()) {

QString text = tr("%l %2")
.arg(numVisibleEditors + 1)
.arg(win->caption());

if (numVisibleEditors < 9)

text.prepend("&");

int id = windowsMenu->insertItem(

text, this, SLOT(activateWindow(int)));
bool isActive = (activeEditor() == win);
windowsMenu->setItemChecked(id, isActive);
windowsMenu->setItemParameter (id, 1i);
++numVisibleEditors;

}

The createWindowsMenu () private function fills the Windows menu with actions
and a list of visible windows. The actions are all typical of such menus and
are easily implemented using QWorkspace’s closeActiveWindow(), closeAllWin-
dows (), tile(), and cascade() slots.

The entry for the active window is shown with a checkmark next to its name.
When the user chooses a window entry, the activatewindow() slot is called
with the index in the windows list as the parameter, because of the call to
setItemParameter (). Thisis very similar to what we did in Chapter 3 when we
implemented the Spreadsheet application’s recently opened files list (p. 54).

For the first nine entries, we put an ampersand in front of the number to make
that number’s single digit into a shortcut key. We don’t provide a shortcut key
for the other entries.

Multiple Document Interface 157

void MainWindow::activateWindow(int param)
{
QWidget *win = windows.at (param) ;
win->show() ;
win->setFocus () ;

}

The activatewindow() function is called when a window is chosen from the Win-
dows menu. The int parameter is the value that we set with setItemParame-
ter (). The windows data member holds the list of windows and was set in cre-
ateWindowsMenu().

void MainWindow: :copyAvailable(bool available)

{
cutAct->setEnabled(available);
copyAct->setEnabled(available);
}

The copyAvailable() slotis called whenever text is selected or deselected in an
editor. It is also called from updateMenus (). It enables or disables the Cut and
Copy actions.

void MainWindow: :updateModIndicator()
{
if (activeEditor() && activeEditor()->isModified())
modLabel->setText (tr ("MOD")) ;
else
modLabel->clear();

}

The updateModIndicator() updates the MOD indicator in the status bar. It
is called whenever text is modified in an editor. It is also called when a new
window is activated.

void MainWindow::closeEvent (QCloseEvent *event)
{
workspace->closeAllWindows () ;
if (activeEditor())
event->ignore() ;
else
event->accept () ;

}

The closeEvent () function is reimplemented to close all child windows. If one
of the child widgets “ignores” its close event (presumably because the user
canceled an “unsaved changes” message box), we ignore the close event for the
MainWindow; otherwise we accept it, resulting in Qt closing the window. If we
didn’t reimplement closeEvent () in MainWindow, the user would not be given
the opportunity to save any unsaved changes.

We have now finished our review of MainWindow, so we can move on to the
Editor implementation. The Editor class represents one child window. It
inherits from QTextEdit, which provides the text editing functionality. Just as
any Qt widget can be used as a stand-alone window, any Qt widget can be used
as a child window in an MDI workspace.

158

6. Layout Management

Here’s the class definition:

class Editor : public QTextEdit

{

Q_OBJECT

public:

Editor (QWidget *parent = 0, const char *name = 0);

void newFile();

bool open();

bool openFile(const QString &fileName) ;
bool save();

bool saveAs();

QSize sizeHint() const;

signals:

void message(const QString &fileName, int delay);

protected:

void closeEvent (QCloseEvent *event);

private:

}i

bool maybeSave() ;

void saveFile(const QString &fileName);

void setCurrentFile(const QString &fileName);
QString strippedName(const QString &fullFileName) ;
bool readFile(const QString &fileName);

bool writeFile(const QString &fileName);

QString curFile;
bool isUntitled;
QString fileFilters;

Four of the private functions that were in the Spreadsheet application’s Main-
window class (p.51) are also present in the Editor class: maybeSave(), saveFile(),
setCurrentFile(), and strippedName().

Editor::Editor(QWidget *parent, const char *name)

{

}

: QTextEdit (parent, name)

setWFlags (WDestructiveClose) ;
setIcon(QPixmap::fromMimeSource ("document.png"));

isUntitled = true;
fileFilters = tr("Text files (*.txt)\n"
"All files (*)");

The Editor constructor sets the WbestructiveClose flag using setWFlags().
When a class constructor doesn’t provide a flags parameter (as is the case
with QTextEdit), we can still set most flags using setWFlags().

Since we allow users to create any number of editor windows, we must make
some provision for naming them so that they can be distinguished before they
have been saved for the first time. One common way of handling this is to
allocate names that include a number (for example, document1. txt). We use the

Multiple Document Interface 159

isUntitled variable to distinguish between names supplied by the user and
names we have created programmatically.

After the constructor, we expect either newFile() or open() to be called.

void Editor::newFile()
{
static int documentNumber = 1;

curFile = tr("document%l.txt").arg(documentNumber) ;
setCaption(curFile);

isUntitled = true;

++documentNumber;

}

The newrile() function generates a name like document2.txt for the new
document. The code belongsin newFile(),rather than the constructor,because
we don’t want to consume numbers when we call open() to open an existing
document in a newly created Editor. Since documentNumber is declared static, it
is shared across all Editor instances.

bool Editor::open()
{
QString fileName =
QFileDialog::getOpenFileName(".", fileFilters, this);
if (fileName.isEmpty())
return false;

return openFile(fileName) ;
}

The open () function tries to open an existing file using openFile().

bool Editor::save()
{
if (isUntitled) {
return saveAs();
} else {
saveFile(curFile);
return true;

}

The save() function uses the isUntitled variable to determine whether it
should call saveFile() or saveas().

void Editor::closeEvent (QCloseEvent *event)
{
if (maybeSave())
event->accept () ;
else
event->ignore() ;

}

The closeEvent () function is reimplemented to allow the user to save unsaved
changes. The logic is coded in the maybeSave() function, which pops up a
message box that asks, “Do you want to save your changes?” If maybeSave()

160 6. Layout Management

returns true, we accept the close event; otherwise, we “ignore” it and leave the
window unaffected by it.

void Editor::setCurrentFile(const QString &fileName)
{

curFile = fileName;

setCaption(strippedName (curFile));

isUntitled = false;

setModified(false);
}

The setCurrentFile() function is called from openFile() and saveFile() to up-
date the currile and isUntitled variables, to set the window caption, and to
set the editor’s “modified” flag to false. The Editor classinherits setModified()
and isModified() from QTextEdit, so it doesn’t need to maintain its own modi-
fied flag. Whenever the user modifies the text in the editor, QTextEdit emits the
modificationChanged () signal and sets its internal modified flag to true.

QSize Editor::sizeHint() const
{
return QSize(72 * fontMetrics().width('x’'),
25 * fontMetrics().lineSpacing());

}

The sizeHint () function returns a size based on the width of the letter x’ and
the height of a text line. QWorkspace uses the size hint to give an initial size to
the window.

Finally, here’s the Editor application’s main. cpp file:
#include <gapplication.h>
#include "mainwindow.h"

int main(int argc, char *argv[])
{
QApplication app(argc, argv);
MainWindow mainWin;
app.setMainWidget (&mainWin) ;

if (arge > 1) {
for (int i = 1; 1 < argc; ++i)
mainWin.openFile(argv[i]);
} else {
mainWin.newFile();

}

mainWin. show() ;
return app.exec();

}

If the user specifies any files on the command line, we attempt to load them.
Otherwise, we start with an empty document. Qt-specific command-line op-
tions, such as -style and -font, are automatically removed from the argument
list by the Qapplication constructor. So if we write

Multiple Document Interface 161

editor -style=motif readme.txt

on the command line, the Editor application starts up with one document,
readme. txt.

MDI is one way of handling multiple documents simultaneously. Another
approach is to use multiple top-level windows. This approach is covered in the
“Multiple Documents” section of Chapter 3.

* Reimplementing Event
Handlers

¢ Installing Event Filters
* Staying Responsive During
Intensive Processing

Event Processing

GUI applications are event-driven: Everything that happensonce the applica-
tion has started is the result of an event. When we program with Qt, we sel-
dom need to think about events, because Qt widgets emit signals when some-
thing significant occurs. Events become useful when we write our own custom
widgets or when we want to modify the behavior of existing Qt widgets.

In this chapter, we will explore Qt’s event model. We will see how to handle the
different types of events in Qt. We will also look at how to use event filters to
monitor events before they reach their destinations. Finally, we will examine
Qt’s event loop, reviewing how to keep the user interface responsive during
intensive processing.

Reimplementing Event Handlers

Events are generated by the window system or by Qt in response to various
occurrences. When the user presses or releases a key or mouse button, a key
or mouse event is generated. When a window is moved to reveal a window
that was underneath, a paint event is generated to tell the newly visible
window that it needs to repaint itself. An event is also generated whenever a
widget gains or loses keyboard focus. Most events are generated in response
to user actions, but some, like timer events, are generated independently by
the system.

Events should not be confused with signals. Signals are useful when using a
widget, whereas events are useful when implementing a widget. For example,
when we are using QPushButton, we are more interested in its clicked() signal
than in the low-level mouse or key events that caused the signal to be emitted.
But if we are implementing a class like QpushButton, we need to write code to
handle mouse and key events and emit the clicked() signal when necessary.

163

164 7. Event Processing

Events are notified to objects through their event () function, inherited from
Q0bject. The event () implementation in QwWidget forwards the most common
types of events to specific event handlers, such as mousePressEvent (), keyPress-
Event (), and paintEvent (), and ignores other kinds of events.

We have already seen many event handlers when implementing MainWindow,
IconEditor, Plotter, ImageEditor, and Editor in the previous chapters. There
are many other types of events, listed in the QEvent reference documentation,
and it is also possible to create custom event types and dispatch custom
events ourselves. Custom events are particularly useful in multithreaded
applications, so they are discussed in Chapter 17 (Multithreading). Here, we
will review two event types that deserve more explanation: key events and
timer events.

Key events are handled by reimplementing keyPressEvent () and keyRelease-
Event (). The Plotter widget reimplements keyPressEvent (). Normally, we only
need to reimplement keyPressEvent () since the only keys for which release is
important are the modifier keys Ctrl, Shift, and Alt, and these can be checked for
in a keyPressEvent () using state(). For example, if we were implementing a
CodeEditor widget, its stripped-down keyPressEvent () that distinguishes be-
tween Home and Ctrl+Home would look like this:

void CodeEditor::keyPressEvent (QKeyEvent *event)
{
switch (event->key()) {
case Key_Home:
if (event->state() & ControlButton)
goToBeginningOfDocument () ;
else
goToBeginningOfLine() ;
break;
case Key_ End:
default:
QWidget::keyPressEvent (event) ;
}
}

The Tab and Backtab (Shift+Tab) keys are special cases. They are handled by
QWidget::event () before it calls keyPressEvent (), with the semantic of passing
the focus to the next or previous widget in the focus chain. This behavior is
usually what we want, but in a CodeEditor widget, we might prefer to make Tab
indent a line. The event () reimplementation would then look like this:

bool CodeEditor::event (QEvent *event)

{

if (event->type() == QEvent::KeyPress) {
QKeyEvent *keyEvent = (QKeyEvent *)event;
if (keyEvent->key() == Key_Tab) {

insertAtCurrentPosition(’\t’);
return true;

Reimplementing Event Handlers 165

return QWidget::event (event);

}

If the event is a key press, we cast the QEvent object to a QkeyEvent and check
which key was pressed. If the key is Tab, we do some processing and return
true to tell Qt that we have handled the event. If we returned false, Qt would
propagate the event to the parent widget.

A higher-level approach for implementing key bindings is to use a Qaction. For
example, if goToBeginningOfLine() and goToBeginningOfDocument () are public
slots in the CodeEditor widget, and the CodeEditor is used as the central widget
in a MainWindow class, we could add the key bindings with the following code:

MainWindow: :MainWindow (QWidget *parent, const char *name)
: QMainWindow(parent, name)

{
editor = new CodeEditor(this);
setCentralWidget (editor) ;

goToBeginningOfLineAct =
new QAction(tr("Go to Beginning of Line"),
tr("Home"), this);
connect (goToBeginningOfLineAct, SIGNAL(activated()),
editor, SLOT(goToBeginningOfLine()));

goToBeginningOfDocumentAct =
new QAction(tr("Go to Beginning of Document"),
tr("Ctrl+Home"), this);
connect (goToBeginningOfDocumentAct, SIGNAL(activated()),
editor, SLOT(goToBeginningOfDocument()));

}

This makes it easy to add the commands to a menu or a toolbar, as we saw
in Chapter 3. If the commands don’t appear in the user interface, the Qaction
objects could be replaced with a QAccel object, the class used by Qaction
internally to support key bindings.

The choice between reimplementing keyPressEvent () and using QAction (or
QAccel) is similar to that between reimplementing resizeEvent () and using
a QLayout subclass. If we are implementing a custom widget by subclassing
QWidget, it’s straightforward to reimplement a few more event handlers and
hard-code the behavior there. But if we are merely using a widget, the higher-
level interfaces provided by QAction and QLayout are more convenient.

Another common type of event is the timer event. While most types of events
occur as a result of a user action, timer events allow applications to perform
processing at regular time intervals. Timer events can be used to implement
blinking cursors and other animations, or simply to refresh the display.

To demonstrate timer events, we will implement a Ticker widget. This widget
shows a text banner that scrolls left by one pixel every 30 milliseconds. If the
widget is wider than the text, the text is repeated as often as necessary to fill
the entire width of the widget.

166 7. Event Processing

sible to say ++ How long it lasted was impossible to say ++ How long it laste

Figure 7.1. The Ticker widget

Here’s the header file:

#ifndef TICKER_H
#define TICKER_H

#include <gwidget.h>

class Ticker : public QWidget

{
Q_OBJECT
Q_PROPERTY (QString text READ text WRITE setText)

public:
Ticker (QWidget *parent = 0, const char *name = 0);

void setText(const QString &newText);
QString text() const { return myText; }
QSize sizeHint() const;

protected:
void paintEvent (QPaintEvent *event);
void timerEvent (QTimerEvent *event);
void showEvent (QShowEvent *event);
void hideEvent (QHideEvent *event);

private:
QString myText;
int offset;
int myTimerId;

}i
#endif

We reimplement four event handlers in Ticker, three of which we have not
seen before: timerEvent (), showEvent (), and hideEvent ().

Now let’s review the implementation:
#include <gpainter.h>
#include "ticker.h"

Ticker::Ticker (QWidget *parent, const char *name)
: QWidget (parent, name)

{
offset = 0;
myTimerId = 0;

}

The constructor initializes the offset variable to 0. The x coordinate at which
the text is drawn is derived from the offset value.

Reimplementing Event Handlers 167

void Ticker::setText(const QString &newText)
{

myText = newText;

update() ;

updateGeometry () ;
}

The setText () function sets the text to display. It calls update() to force a
repaint and updateGeometry() to notify any layout manager responsible for the
Ticker widget about a size hint change.

QSize Ticker::sizeHint() const
{
return fontMetrics().size(0, text());

}

The sizeHint () function returns the space needed by the text as the widget’s
ideal size. The Qwidget::fontMetrics() function returns a QFontMetrics object
that can be queried to obtain information relating to the widget’s font. In this
case, we ask for the size required by the given text.

void Ticker::paintEvent (QPaintEvent *)
{
QPainter painter(this);

int textWidth = fontMetrics().width(text());

if (textwidth < 1)
return;

int x = -offset;

while (x < width()) {
painter.drawText (x, 0, textWidth, height(),

AlignLeft | AlignVCenter, text());

X += textWidth;

}

The paintEvent () function draws the text using Qrainter::drawText (). It uses
fontMetrics() to ascertain how much horizontal space the text requires, and
then draws the text as many times as necessary to fill the entire width of the
widget, taking offset into account.

void Ticker::showEvent (QShowEvent *)
{
myTimerId = startTimer(30);

}

The showEvent () function starts a timer. The call to Q0bject::startTimer|()
returns an ID number, which we can use later to identify the timer. Qobject
supports multiple independent timers, each with its own time interval. After
the call to startTimer (), Qt will generate a timer event approximately every
30 milliseconds; the accuracy depends on the underlying operating system.

We could have called startTimer() in the Ticker constructor, but we save
some resources by having Qt generate timer events only when the widget is
actually visible.

168 7. Event Processing

void Ticker::timerEvent (QTimerEvent *event)

{

if (event->timerId() == myTimerId) {
+toffset;
if (offset >= fontMetrics().width(text()))
offset = 0;
scroll (-1, 0);
} else {

QWidget::timerEvent (event) ;
}
}

The timerEvent () function is called at intervals by the system. It increments
offset by 1 to simulate movement, wrapping at the width of the text. Then it
scrolls the contents of the widget one pixel to the left using Qwidget::scroll().
It would have been sufficient to call update () instead of scroll(),but scroll()
is more efficient and prevents flicker, because it simply moves the existing
pixels on screen and only generates a paint event for the widget’s newly
revealed area (a 1-pixel-wide strip in this case).

If the timer event isn’t for the timer we are interested in, we pass it on to our
base class.

void Ticker::hideEvent (QHideEvent *)
{

killTimer (myTimerId) ;
}

The hideEvent () function calls Q0bject::killTimer () to stop the timer.

Timer events are low-level, and if we need multiple timers, it can become
cumbersome to keep track of all the timer IDs. In such situations, it is usually
easier to create a QTimer object for each timer. QTimer emits the timeout ()
signal at each time interval. QTimer also provides a convenient interface for
single-shot timers (timers that time out just once).

Installing Event Filters

One really powerful feature of Qt’s event model is that a Qobject instance
can be set to monitor the events of another Qobject instance before the latter
object even sees them.

Let’s suppose that we have a CustomerInfobialog widget composed of several
QLineEdits and that we want to use the Space key to move the focus to the next
QLineEdit. This non-standard behavior might be appropriate for an in-house
application whose users are trained in its use. A straightforward solution is
to subclass QLineEdit and reimplement keyPressEvent () to call focusNextPrev-
child(), like this:

void MyLineEdit::keyPressEvent (QKeyEvent *event)
{
if (event->key() == Key_Space)
focusNextPrevChild(true);

Installing Event Filters 169

else
QLineEdit::keyPressEvent (event) ;

}

This approach has many disadvantages. Because MyLineEdit isn’t a standard
Qt class, it must be integrated with Q¢ Designer if we want to design forms
that make use of it. Also, if we use several different kinds of widgets in the
form (for example, QComboBoxes and QSpinBoxes), we must also subclass them
to make them exhibit the same behavior and integrate them with @¢ Designer
as well.

A better solution is to make CustomerInfobialog monitor its child widgets’ key
press events and implement the required behavior in the monitoring code.
This can be achieved using event filters. Setting up an event filter involves
two steps:

1. Register the monitoring object with the target object by calling install-
EventFilter() on the target.

2. Handle the target object’s events in the monitor’s eventFilter() function.

A good place to register the monitoring object is in the CustomerInfoDialog con-
structor:

CustomerInfoDialog::CustomerInfoDialog(QWidget *parent,
const char *name)
: QDialog(parent, name)

firstNameEdit->installEventFilter (this);

lastNameEdit->installEventFilter(this);

cityEdit->installEventFilter(this);

phoneNumberEdit->installEventFilter(this);
}

Once the event filter is registered, the events that are sent to the firstName-
Edit, lastNameEdit, cityEdit, and phoneNumberEdit widgets are first sent to the
CustomerInfoDialog’s eventFilter () function before they are sent on to their in-
tended destination. (If multiple event filters are installed on the same object,
the filters are activated in turn, from the most recently installed back to the
first installed.)

Here’s the eventFilter () function that receives the events:

bool CustomerInfoDialog::eventFilter(QObject *target, QEvent *event)
{
if (target == firstNameEdit || target == lastNameEdit
|| target == cityEdit || target == phoneNumberEdit) {

if (event->type() == QEvent::KeyPress) {
QKeyEvent *keyEvent = (QKeyEvent *)event;
if (keyEvent->key() == Key_Space) {

focusNextPrevChild(true);
return true;

170 7. Event Processing

}
return QDialog::eventFilter(target, event);

}

First, we check to see if the target widget is one of the QLineEdits. It’s easy to
forget that the base class, gdialog, might monitor some widgets of its own. (In
Qt 3.2, this is not the case for gbialog. However, other Qt widget classes, such
as QMainWindow, do monitor some of their child widgets for various reasons.)

If the event is a key press, we cast it to QkeyEvent and check which key is
pressed. If the pressed key is Space, we call focusNextPrevChild() to pass focus
on to the next widget in the focus chain, and we return true to tell Qt that
we have handled the event. If we returned false, Qt would send the event
to its intended target, resulting in a spurious space being inserted into the
QLineEdit.

If the event isn’t a Space key press, we pass control to the base class’s imple-
mentation of eventFilter().

Qt offers five levels at which events can be processed and filtered:
1. We can reimplement a specific event handler.

Reimplementing event handlers such as mousePressEvent (), keyPress-
Event (), and paintEvent() is by far the most common way to process
events. We have already seen many examples of this.

2. We can reimplement QObject::event().

By reimplementing the event () function, we can process events before
they reach the specific event handlers. This approach is mostly needed to
override the default meaning of the Tab key, as shown earlier (p. 164). This
is also used to handle rare types of events for which no specific event han-
dler exists (for example, LayoutDirectionChange). When we reimplement
event (), we need to call the base class’s event () function for handling the
cases we don’t explicitly handle.

3. We can install an event filter on a single QObject.

Once an object has been registered using installEventFilter(), all the
events for the target object are first sent to the monitoring object’s event-
Filter () function. We have used this approach to handle Space key press-
esin the CustomerInfoDialog example above.

4. We can install an event filter on the QApplication object.

Once an event filter has been registered for qapp (the unique Qapplication
object), every event for every object in the application is sent to the event-
Filter() function before it is sent to any other event filter. This approach
is mostly useful for debugging and for hiding Easter eggs. It can also be
used to handle mouse events sent to disabled widgets, which Qapplication
normally discards.

Installing Event Filters 171

5. We can subclass QApplication and reimplement notify().

Qt calls Qapplication::notify() to send out an event. Reimplementing
this function is the only way to get all the events, before any event filters
get the opportunity to look at them. Event filters are generally more
useful, because there can be any number of concurrent event filters, but
only one notify() function.

Many event types, including mouse and key events, can be propagated. If
the event has not been handled on the way to its target object or by the target
object itself, the whole event processing process is repeated, but this time with
the target object’s parent as the new target. This continues, going from parent
to parent, until either the event is handled or the top-level object is reached.

" Caption

QDialog (3]
QGroupBox (2]
QCheckBox QCheckBox

QCheckBox QCheckBox @

Figure 7.2. Event propagation in a dialog

Figure 7.2 shows how a key press event is propagated from child to parent in
a dialog. When the user presses a key, the event is first sent to the widget that
has focus, in this case the bottom-right gcheckBox. If the QCheckBox doesn’t han-
dle the event, Qt sends it to the QGroupBox, and finally to the gdialog object.

Staying Responsive During Intensive Processing

When we call Qapplication::exec(), we start Qt’s event loop. Qt issues a few
events on startup to show and paint the widgets. After that, the event loop is
running, constantly checking to see if any events have occurred and dispatch-
ing these events to Q0bjects in the application.

While one event is being processed, additional events may be generated and
appended to Qt’s event queue. If we spend too much time processing a par-
ticular event, the user interface will become unresponsive. For example, any
events generated by the window system while the application is saving a file
to disk will not be processed until the file is saved. During the save, the appli-
cation will not respond to requests from the window system to repaint itself.

One solution is to use multiple threads: one thread for the application’s user
interface and another thread to perform file saving (or any other time-consum-

172 7. Event Processing

ing operation). This way, the application’s user interface will stay responsive
while the file is being saved. We will see how to achieve this in Chapter 17.

A simpler solution is to make frequent calls to Qapplication: :processEvents ()
in the file saving code. This function tells Qt to process any pending events,
and then returns control to the caller. In fact, QApplication::exec() is little
more than a while loop around a processEvents () function call.

Here’s an example of how we can keep the user interface responsive using
processEvents (), based on the file saving code for Spreadsheet (p. 77):

bool Spreadsheet::writeFile(const QString &fileName)
{
QFile file(fileName);

for (int row = 0; row < NumRows; ++row) {
for (int col = 0; col < NumCols; ++col) {
QString str = formula(row, col);
if (!lstr.isEmpty())
out << (Q_UINT16)row << (Q_UINT16)col << str;
}
gApp->processEvents () ;
}

return true;

}

One danger with this approach is that the user might close the main window
while the application is still saving, or even click File|Save a second time,
resulting in undefined behavior. The easiest solution to this problem is to
replace the

gApp->processEvents () ;

call with a

gApp->eventLoop () -—>processEvents (QEventLoop: : ExcludeUserInput) ;

call, which tells Qt to ignore mouse and key events.

Often, we want to show a QProgressDialog while a long running operation is
taking place. QProgressDialog has a progress bar that keeps the user informed
about the progress being made by the application. QProgressDialog also
provides a Cancel button that allows the user to abort the operation. Here’s
the code for saving a Spreadsheet file using this approach:

bool Spreadsheet::writeFile(const QString &fileName)

{
QFile file(fileName) ;

QProgressDialog progress(tr("Saving file..."), tr("Cancel"),
NumRows) ;
progress.setModal (true) ;
for (int row = 0; row < NumRows; ++row) {
progress.setProgress (row) ;
gApp->processEvents () ;

Staying Responsive During Intensive Processing 173

if (progress.wasCanceled()) {
file.remove();
return false;

}

for (int col = 0; col < NumCols; ++col) {
QString str = formula(row, col);
if (!str.isEmpty())
out << (Q_UINT16)row << (Q_UINTI16)col << str;
}
}
return true;

}

We create a QProgressDialog with NumRows as the total number of steps. Then,
for each row, we call setProgress () to update the progressbar. QProgressdialog
automatically computes a percentage by dividing the current progress value
by the total number of steps. We call Qapplication::processEvents () to process
any repaint events or any user clicks or key presses (for example, to allow the
user to click Cancel). If the user clicks Cancel, we abort the save and remove
the file.

We don’t call show() on the QprogressDialog because progress dialogs do that
for themselves. If the operation turns out to be short, presumably because the
file to save is small or because the machine is fast, Qprogressbialog will detect
this and will not show itself at all.

There is a completely different way of dealing with long running operations.
Instead of performing the processing when the user requests, we can defer
the processing until the application is idle. This can work if the processing
can be safely interrupted and resumed, since we cannot predict how long the
application will be idle.

In Qt, this approach can be implemented by using a special kind of timer: a
0-millisecond timer. These timers time out whenever there are no pending
events. Here’s an example timerEvent () implementation that shows the idle
processing approach:

void Spreadsheet::timerEvent (QTimerEvent *event)
{
if (event->timerId() == myTimerId) {
while (step < MaxStep && !gApp->hasPendingEvents()) {
performStep (step) ;
++step;
}
} else {
QTable::timerEvent (event) ;
}
}

If hasPendingEvents () returns true, we stop processing and give control back to
Qt. The processing will resume when Qt has handled all its pending events.

* Painting with QPainter
Graphics with QCanvas
* Printing

Graphics with OpenGL

2D and 3D Graphics

In this chapter, we will explore Qt’s graphics capabilities. The cornerstone of
Qt’s 2D drawing engine is QPainter, which can be used to draw on a widget on
the screen, on an off-screen pixmap, or on a physical printer. Qt also includes
a QCanvas class that provides a higher-level way of doing graphics, using an
item-based approach that can efficiently handle thousands and thousands of
items of various shapes. Many predefined items are provided, and it is easy
to create custom canvas items.

An alternative to Qrainter and QCanvas is to use the OpenGL library. OpenGL
is a standard library for drawing 3D graphics, but it can also be used for draw-
ing 2D graphics. It is very easy to integrate OpenGL code into Qt applications,
as we will demonstrate.

Painting with QPainter

A Qrainter can be used to draw on a “paint device”, such as a widget or a pix-
map. QPainter is useful when we write custom widgets or custom item classes
with their own look and feel. Qrainter is also the class to use for printing; this
will be explained in detail later in the chapter.

QPainter can draw geometric shapes: points, lines, rectangles, ellipses, arcs,
chords, pie segments, polygons, and cubic Bézier curves. It can also draw
pixmaps, images, and text.

When we pass a paint device to the QPainter constructor, Qpainter adopts some
settings from the device and initializes other settings to default values. These
settings influence the way drawing is performed. The three most important
are the painter’s pen, brush, and font:

* The pen is used for drawing lines and geometric shape boundaries. It
consists of a color, a width, a line style, a cap style, and a join style.

175

176 8. 2D and 3D Graphics

(Xp Yy P, - g 7 i
(X5, ¥5) Py = = Py Py Py

drawLine() drawPoints () drawLineSegments ()
p2 ,F !‘ p3 ﬂ p2 p3
P Py P, Py o Py
drawCubicBezier () drawPolyline() drawPolygon()
(x.y) (x), (x.),
' Q h '
[—————»| [—————»} [————»
w w w
drawRect () drawRoundRect () drawEllipse()
xy), xy), (xy),
O TR N ,“ ~+:__QL.__“‘, h __(_X___’% h
AAAAAAA “"u““_“»"'» [
w w w
drawArc () drawChord() drawPie()
Figure 8.1. Qrainter functions for drawing geometric shapes
line width
1 2 3 4
NoPen
SolidLine]
DashLine —_— e EEE,E———— e .
DotLine = = ========== ssssssssmssmsss ssssssssss EEEEEEEER
DashDotLine @ — = — - — s e e BN N BN N S
DashDotDotLine —=-=-—-- — EmsrEmrrEmsEms S srms s ms B NN EEEN

Figure 8.2. Pen styles

® The brush is the pattern used for filling geometric shapes. It consists of
a color and a style.

* The font is used for drawing text. A font has many attributes, including
a family and a point size.

These settings can be modified by calling one of setPen(), setBrush(), and
setFont () with a QPen, QBrush, or QFont object.

Painting with QPainter 177

NNN

FlatCap SquareCap RoundCap

dl

MiterdJoin BevelJoin RoundJoin

SolidPattern DenselPattern Dense2Pattern Dense3Pattern Dense4Pattern

Figure 8.3. Cap and join styles

Dense5Pattern Dense6Pattern Dense7Pattern HorPattern VerPattern
f;;iiiiijf xx:::::;;ifgé |
CrossPattern BDiagPattern FDiagPattern DiagCross-— NoBrush
Pattern

Figure 8.4. Brush styles

Here’s the code to draw the ellipse shown in Figure 8.5 (a):

QPainter painter(this);
painter.setPen(QPen(black, 3, DashDotLine));
painter.setBrush(QBrush(red, SolidPattern));
painter.drawEllipse(20, 20, 100, 60);

Here’s the code to draw the pie segment shown in Figure 8.5 (b):

QPainter painter(this);

painter.setPen(QPen(black, 5, SolidLine));
painter.setBrush(QBrush(red, DiagCrossPattern));
painter.drawPie(20, 20, 100, 60, 60 * 16, 270 * 16);

The last two arguments to drawpie() are expressed in sixteenths of a degree.

178

8. 2D and 3D Graphics

(a) An ellipse (b) A pie segment (c) A Bézier curve

Figure 8.5. Geometric shape examples

Here’s the code to draw the cubic Bézier curve shown in Figure 8.5 (c):

QPainter painter(this);
QPointArray points(4);

points[0] = QPoint (20, 80);
points[1] = QPoint (50, 20);
points[2] = QPoint (80, 20);
points[3] = QPoint (120, 80);

painter.setPen(QPen(black, 3, SolidLine));
painter.drawCubicBezier (points);

The current state of a painter can be saved on a stack by calling save() and
restored later on by calling restore(). This can be useful if we want to tem-
porarily change some painter settings and then reset them to their previous
values.

The other settings that control a painter, in addition to the pen, brush, and
font, are:

The background color is used to fill the background of geometric shapes
(beneath the brush pattern), text, or bitmaps when the background mode
is OpaqueMode (the default is TransparentMode).

The raster operation specifies how the newly drawn pixels should interact
with the pixels already present on the paint device. The default is Copy-
ROP, which means that the new pixels are simply copied onto the device,
ignoring the previous pixel value. Other raster operationsinclude xorRrop,
NotROP, AndROP, and NotAndROP.

The brush origin is the starting point for brush patterns, normally the
top-left corner of the widget.

The clip region is the area of the device that can be painted. Drawing
operations performed outside the clip region are ignored.

The viewport, window, and world matrix determine how logical Qpainter
coordinates map to physical paint device coordinates. By default, these
are set up so that the logical and physical coordinate systems coincide.

Let’s take a closer look at the coordinate system defined by the viewport,
window, and world matrix. (In this context, the term “window” does not refer
to a window in the sense of a top-level widget, and the “viewport” has nothing
to do with QScrollviews viewport.)

Painting with QPainter 179

The viewport and the window are tightly bound. The viewport is an arbi-
trary rectangle specified in physical coordinates. The window specifies the
same rectangle, but in logical coordinates. When we do the painting, we
specify points in logical coordinates, and those coordinates are converted
into physical coordinates in a linear algebraic manner, based on the current
window—viewport settings.

By default, the viewport and the window are set to the device’s rectangle. For
example, if the device is a 320 x 200 widget, both the viewport and the window
are the same 320 x 200 rectangle with its top-left corner at position (0, 0). In
this case, the logical and physical coordinate systems are the same.

The window—viewport mechanism is useful to make the drawing code inde-
pendent of the size or resolution of the paint device. We can always do the
arithmetic to map logical coordinates to physical coordinates ourselves, but it’s
usually simpler tolet Qpainter do the work. For example, if we want the logical
coordinates to extend from (-50, -50) to (+50, +50), with (0, 0) in the middle,
we can set the window as follows:

painter.setWindow(QRect (-50, -50, 100, 100));

The (-50, -50) pair specifies the origin, and the (100, 100) pair specifies the
width and height. This means that the logical coordinates (-50, -50) now
correspond to the physical coordinates (0, 0), and the logical coordinates
(+50, +50) correspond to the physical coordinates (320, 200). In this example,
as is often the case, we don’t need to change the viewport.

(-50, -50) (0, 0)

(-30, -20) (64, 60)

)

(+10, +20) (192, 140)

(+50, +50) (320, 200)
window viewport

Figure 8.6. Converting logical coordinates into physical coordinates

Now comes the world matrix. The world matrix is a transformation matrix
that is applied in addition to the window—viewport conversion. It allows us to
translate, scale, rotate, or shear the items we are drawing. For example, if we
wanted to draw text at a 45° angle, we would use this code:

OWMatrix matrix;

matrix.rotate(45.0);
painter.setWorldMatrix(matrix) ;
painter.drawText (rect, AlignCenter, tr("Revenue"));

The logical coordinates we pass to drawText () are transformed by the world
matrix, then mapped to physical coordinates using the window-viewport
settings.

180 8. 2D and 3D Graphics

If we specify multiple transformations, they are applied in the order in
which they are given. For example, if we want to use the point (10, 20) as the
rotation’s pivot point, we can do so by translating the window, performing the
rotation, and then translating the window back to its original position:

OWMatrix matrix;

matrix.translate(-10.0, -20.0);
matrix.rotate(45.0);

matrix.translate(+10.0, +20.0);
painter.setWorldMatrix(matrix) ;
painter.drawText (rect, AlignCenter, tr("Revenue"));

A simpler way to specify transformations is to use QrPainter’s translate(),
scale(), rotate(), and shear () convenience functions:

painter.translate(-10.0, -20.0);
painter.rotate(45.0);

painter.translate(+10.0, +20.0);
painter.drawText (rect, AlignCenter, tr("Revenue"));

But if we want to use the same transformations repeatedly, it’s faster to store
them in a gwMatrix object and set the world matrix on the painter whenever
the transformations are needed.

If we want to just save the world matrix and restore it later, we can use
saveWorldMatrix () and restoreWorldMatrix().

Figure 8.7. The OvenTimer widget

To illustrate painter transformations, we will review the code of the ovenTimer
widget shown in Figure 8.7. The ovenTimer widget is modeled after the physical
oven timers that were used before it was common to have ovens with clocks
built-in. The user can click a notch to set the duration. The wheel automati-
cally turns counterclockwise until 0 is reached, at which point ovenTimer emits
the timeout () signal.

class OvenTimer : public QWidget
{
Q_OBJECT
public:
OvenTimer (QWidget *parent, const char *name = 0);

void setDuration(int secs);

Painting with QPainter 181

int duration() const;
void draw(QPainter *painter);

signals:
void timeout();

protected:
void paintEvent (QPaintEvent *event);
void mousePressEvent (QMouseEvent *event);

private:
QDateTime finishTime;
QTimer *updateTimer;
QTimer *finishTimer;

}i

The ovenTimer class inherits Qwidget and reimplements two virtual functions:
paintEvent () and mousePressEvent ().

#include <gpainter.h>
#include <gpixmap.h>
#include <gtimer.h>

#include <cmath>
using namespace std;

#include "oventimer.h"

const double DegreesPerMinute 7.0;

const double DegreesPerSecond = DegreesPerMinute / 60;
const int MaxMinutes = 45;

const int MaxSeconds = MaxMinutes * 60;

const int UpdateInterval = 10;

OvenTimer::OvenTimer (QWidget *parent, const char *name)
QWidget (parent, name)

{

finishTime = QDateTime::currentDateTime();

updateTimer = new QTimer(this);

finishTimer = new QTimer(this);

connect (updateTimer, SIGNAL(timeout()), this, SLOT(update()));

connect (finishTimer, SIGNAL(timeout()), this, SIGNAL(timeout()));
}

In the constructor, we create two QTimer objects: updateTimer is used to refresh
the appearance of the widget at regular intervals, and finishTimer emits the
widget’s timeout () signal when the timer reaches 0.

void OvenTimer::setDuration(int secs)
{
if (secs > MaxSeconds)
secs = MaxSeconds;
finishTime = QDateTime::currentDateTime () .addSecs (secs);
updateTimer->start (UpdateInterval * 1000, false);
finishTimer->start(secs * 1000, true);
update() ;

182 8. 2D and 3D Graphics

The setDuration() function sets the duration of the oven timer to the given
number of seconds. The false argument passed in the updateTimer’s start ()
call tells Qt that this a repeating timer that will time out every 10 seconds.
The finishTimer only needs to timeout once, so we use a true argument to in-
dicate that it is a single-shot timer. We compute the finish time by adding the
duration in seconds to the current time, obtained from QDateTime::current-
DateTime(), and store it in the finishTime private variable.

The finishTime variable is of type QDateTime, the Qt data type for storing a
date and a time. The date component of the QbateTime is important in situa-
tions where the current time is before midnight and the finish time is after
midnight.

int OvenTimer::duration() const

{

int secs = QDateTime::currentDateTime().secsTo(finishTime) ;
if (secs < 0)
secs = 0;

return secs;

}

The duration() function returns the number of seconds left before the timer is
due to finish.

void OvenTimer::mousePressEvent (QMouseEvent *event)

{

event->pos() - rect().center();

atan2 (- (double)point.x(), -(double)point.y())
* 180 / 3.14159265359;

setDuration((int) (duration() + theta / DegreesPerSecond));
update();

QPoint point
double theta

}

If the user clicks the widget, we find the closest notch using a subtle but
effective mathematical formula, and we use the result to set the new duration.
Then we schedule a repaint. The notch that the user clicked will now be at the
top and will move counterclockwise as time passes until 0 is reached.

void OvenTimer::paintEvent (QPaintEvent *)
{
QPainter painter(this);
int side = QMIN(width(), height());
painter.setViewport ((width() - side) / 2, (height() - side) / 2,
side, side);
painter.setWindow(-50, -50, 100, 100);
draw(&painter) ;
}

In paintEvent (), we set the viewport to be the largest square area that fits in-
side the widget, and we set the window to be the rectangle (-50,-50, 100, 100),
that is, the 100 x 100 rectangle extending from (-50, -50) to (+50, +50). The
QMIN() macro returns the lowest of its two arguments.

Painting with QPainter 183

Figure 8.8. The OvenTimer widget at three different sizes

If we had not set the viewport to be a square, the oven timer would be an
ellipse when the widget is resized to a non-square rectangle. In general, if we
want to avoid such deformations, we must set the viewport and the window to
rectangles with the same aspect ratio.

The window setting of (-50, -50, 100, 100) was also chosen bearing these
issues in mind:

® Oprainter’s draw functions take int coordinate values. If we choose a
window that is too small, we might not be able to specify all the points we
need as integers.

¢ If we use a large window and use drawText () to draw some text, we will
need a larger font to compensate.

This makes (-50, -50, 100, 100) a better choice than, say, (-5, -5, 10, 10) or
(-2000, -2000, 4000, 4000).

Now let’s look at the drawing code:

void OvenTimer::draw(QPainter *painter)

{
static const QCOORD triangle[3][2] = {
0,

{ -2, -49 }, { +2, -49 }, { -47 '}
}i
QPen thickPen(colorGroup().foreground(), 2);
QPen thinPen(colorGroup().foreground(), 1);

painter->setPen(thinPen);
painter->setBrush(colorGroup () .foreground()) ;
painter->drawConvexPolygon (QPointArray (3, &triangle[0][0]));

We start by drawing the tiny triangle that marks the O position at the top
of the widget. The triangle is specified by three hard-coded coordinates, and
we use drawConvexPolygon() to render it. We could have used drawPolygon(),
but when we know the polygon we are drawing is convex, we can save some
microseconds by calling drawConvexPolygon().

184 8. 2D and 3D Graphics

What is so convenient about the window—viewport mechanism is that we can
hard-code the coordinates we use in the draw commands and still get good
resizing behavior. Nor do we have to worry about non-square widgets; this is
handled by setting the viewport appropriately.

painter->setPen(thickPen) ;

painter->setBrush(colorGroup().light()
painter->drawEllipse(-46, -46, 92, 92)
painter->setBrush(colorGroup() .mid());
painter->drawEllipse(-20, -20, 40, 40)
painter->drawEllipse(-15, -15, 30, 30)

We draw the outer circle and the two inner circles. The outer circle is filled
with the palette’s “light” component (typically white), while the two inner
circles are filled with the “mid” component (typically medium gray).

int secs = duration();
painter->rotate(secs * DegreesPerSecond);
painter->drawRect (-8, -25, 16, 50);

for (int i = 0; i <= MaxMinutes; ++i) {
if (1 %5 ==20) {
painter->setPen(thickPen) ;
painter->drawLine(0, -41, 0, -44);
painter->drawText (-15, -41, 30, 25,
AlignHCenter | AlignTop,
QString: :number(i));
} else {
painter->setPen(thinPen) ;
painter->drawLine(0, -42, 0, -44);
}
painter->rotate(-DegreesPerMinute) ;

}

We draw the knob, the notches, and at every fifth notch we draw the number
of minutes. We call rotate() to rotate the painter’s coordinate system. In
the old coordinate system, the O-minute mark was on top; now, the O-minute
mark is moved to the place that’s appropriate for the time left. We draw the
rectangular knob handle after the rotation, since its orientation depends on
the rotation angle.

In the for loop, we draw the tick marks along the outer circle’s edge and
the numbers for each multiple of 5 minutes. The text is put in an invisible
rectangle underneath the tick mark. At the end of one iteration, we rotate the
painter clockwise by 7°, the amount corresponding to one minute. The next
time we draw a tick mark, it will be at a different position around the circle,
although the coordinates we pass to the drawLine() and drawText () calls are
always the same.

Another way of implementing an oven timer would have been to compute the
(x, y) positions ourselves, using sin() and cos () to find the positions along the

Painting with QPainter 185

circle. But then we would still need to use a translation and a rotation to draw
the text at an angle.

There is one issue left: flicker. Every ten seconds, we repaint the widget
entirely, causing it to flicker each time. The solution is to add double buffering.
This can be done by passing the WNoAutoErase to the base class constructor and
by replacing the paintEvent () function shown earlier with this one:

void OvenTimer::paintEvent (QPaintEvent *event)
{

static QPixmap pixmap;

QRect rect = event->rect();

QSize newSize = rect.size().expandedTo(pixmap.size());
pixmap.resize(newSize);
pixmap.fill(this, rect.topLeft());

QPainter painter(&pixmap, this);

int side = QMIN(width(), height());

painter.setViewport ((width() - side) / 2 - event->rect().x(),
(height () - side) / 2 - event->rect().y(),
side, side);

painter.setWindow(-50, -50, 100, 100);

draw(&painter) ;

bitBlt(this, event->rect().topLeft(), &pixmap);

}

This time, we paint on a pixmap instead of on the widget directly. The pixmap
is given the size of the area to repaint, and the window—viewport pair is ini-
tialized in such a way that the painting is performed the same as if it was done
directly on the widget. The draw() function is also unchanged. At the end, we
copy the pixmap onto the widget using bitBlt ().

This is similar to what we explained in the “Double Buffering” section of
Chapter 5 (p. 113), but there’s one important difference: In Chapter 5, we used
translate() totranslate the painter, while here we subtract the paint event’sx
and y coordinates when setting up the viewport. Using translation here would
not be as convenient, because the translation would have to be expressed in
logical window coordinates, whereas the event’s rectangle is in physical coor-
dinates.

Graphics with QCanvas

Qcanvas offers a higher-level interface for doing graphics than Qprainter pro-
vides. A QCanvas can contain items of any shape and uses double buffering in-
ternally to avoid flicker. For applications that need to present many user-ma-
nipulable items, like data visualization programs and 2D games, using QCan-
vas is often a better approach than reimplementing gwidget: :paintEvent () or
QScrollview: :drawContents () and painting everything manually.

The items shown on a QCanvas are instances of QCanvasItem or of one of its sub-
classes. Qt provides a useful set of predefined subclasses: QCanvasLine, QCan-

186 8. 2D and 3D Graphics

vasRectangle, QCanvasPolygon, QCanvasPolygonalIltem, QCanvasEllipse, QCanvas-—
Spline, QCanvasSprite, and QCanvasText. These classes can themselves be sub-
classed to provide custom canvas items.

A Qcanvas and its gCanvasItems are purely data and have no visual representa-
tion. To render the canvas and its items, we must use a QCanvasvView widget.
This separation of the data from its visual representation makes it possible to
have multiple QCanvasview widgets visualizing the same canvas. Each of these
QCanvasViews can present its own portion of the canvas, possibly with different
transformation matrices.

Qcanvas is highly optimized to handle a large number of items. When an
item changes, QCanvas only redraws the “chunks” that have changed. It also
provides an efficient collision-detection algorithm. For these reasons alone,
it’s worth considering Qcanvas as an alternative to reimplementing gwidget: :
paintEvent () or QScrollView: :drawContents().

[|

Fresident

Board

Wice President

o | of

Figure 8.9. The DiagramView widget

To demonstrate QCanvas usage, we present the code for the Diagranview widget,
a minimalist diagram editor. The widget supports two kinds of shapes (boxes
and lines) and provides a context menu that lets the user add new boxes and
lines, copy and paste them, delete them, and edit their properties.

class DiagramView : public QCanvasView
{
Q_OBJECT
public:
DiagramView(QCanvas *canvas, QWidget *parent = 0,
const char *name = 0);

public slots:
void cut();
void copy();
void paste();
void del();
void properties();
void addBox();

Graphics with Q@Canvas 187

void
void
void

addLine() ;
bringToFront () ;
sendToBack () ;

The Diagramview class inherits QCanvasView, which itself inherits QScrollview.
It provides many public slots that an application could connect to. The slots
are also used by the widget itself to implement its context menu.

protected:

void
void
void
void

private:
void
void
void
void

contentsContextMenuEvent (QContextMenuEvent *event) ;
contentsMousePressEvent (QMouseEvent *event) ;
contentsMouseMoveEvent (QMouseEvent *event) ;
contentsMouseDoubleClickEvent (QMouseEvent *event) ;

createActions();
addItem(QCanvasItem *item);
setActiveItem(QCanvasItem *item);
showNewItem(QCanvasItem *item);

QCanvasItem *pendingItem;
QCanvasItem *activeItem;
QPoint lastPos;

int minZz;

int maxZ;

QAction *cutAct;
QAction *copyAct;

QAction *sendToBackAct;

i

The protected and private members of the class will be explained shortly.

Figure 8.10. The DiagramBox and DiagramLine canvas items

Along with the Diagramview class, we also need to define two custom canvas
item classes to represent the shapes we want to draw. We will call these
classes DiagramBox and DiagramLine.

class DiagramBox : public QCanvasRectangle

{
public:
enum

{ RITI = 1001 };

DiagramBox (QCanvas *canvas);
~DiagramBox() ;

void

setText (const QString &newText);

QString text() const { return str; }
void drawShape(QPainter &painter);

188 8. 2D and 3D Graphics

QRect boundingRect() const;
int rtti() const { return RTTI; }

private:
QString str;
Vi

The piagramBox class is a type of canvas item that displays a box and a piece
of text. It inherits some of its functionality from QCanvasRectangle, a QCanvas-
Itemsubclassthat displays a rectangle. To QCanvasRectangle we add the ability
to show some text in the middle of the rectangle and the ability to show tiny
squares (“handles”) at each corner to indicate that an item is active. In a real-
world application, we would make it possible to click and drag the handles to
resize the box, but to keep the code short we will not do so here.

The rtti() function is reimplemented from QCanvasItem. Its name stands for
“run-time type identification”, and by comparing its return value with the
RTTI constant, we can determine whether an arbitrary item in the canvas is
a DiagramBox or not. We could perform the same check using C++s dynamic_
cast<T>() mechanism, but that would restrict us to C++ compilers that support
this feature.

The value of 1001 is arbitrary. Any value above 1000 is acceptable, as long as
it doesn’t collide with other item types used in the same application.

class DiagramLine : public QCanvasLine
{
public:

enum { RTTI = 1002 };

DiagramLine (QCanvas *canvas);
~DiagramLine() ;

QPoint offset() const { return QPoint((int)x(), (int)y()); }
void drawShape(QPainter &painter);
QPointArray areaPoints() const;
int rtti() const { return RTTI; }
}i

The DiagramLine class is a canvas item that displays a line. It inherits some
of its functionality from QCanvasLine, and adds the ability to show handles at
each end to indicate that the line is active.

Now we will review the implementations of these three classes.

DiagramView::DiagramView(QCanvas *canvas, QWidget *parent,
const char *name)
: QCanvasView(canvas, parent, name)

pendingItem = 0;
activeItem = 0;
minZz = 0;
maxZz = 0;
createActions();

Graphics with Q@Canvas 189

The piagramview constructor takes a canvas as its first argument and passes it
on to the base class constructor. The dDiagramview will show this canvas.

The QActions are created in the createActions() private function. We have
implemented several versions of this function in earlier chapters, and this one
follows the same pattern, so we will not reproduce it here.

void DiagramView::contentsContextMenuEvent (QContextMenuEvent *event)
{
QPopupMenu contextMenu (this);
if (activeltem) {
cutAct->addTo (&contextMenu) ;
copyAct->addTo (&contextMenu) ;
deleteAct->addTo (&contextMenu) ;
contextMenu. insertSeparator () ;
bringToFrontAct->addTo (&contextMenu) ;
sendToBackAct->addTo (&contextMenu) ;
contextMenu.insertSeparator();
propertiesAct->addTo (&contextMenu) ;
} else {
pasteAct->addTo (&contextMenu) ;
contextMenu.insertSeparator();
addBoxAct->addTo (&contextMenu) ;
addLineAct->addTo (&contextMenu) ;
}
contextMenu.exec (event->globalPos());

}

The contentsContextMenuEvent () function is reimplemented from QScrollview
to create a context menu.

K Cut Cirl+i
Copy Ctri+C
[@Y eoste ctriew
—_— 3‘ Delete Del
[A&dd Box
@ Britig to Front
Jf Agld Line
_ % Send to Back
FProperties...

Figure 8.11. The DiagramView widget’s context menus

If an item is active, the menu is populated with the actions that make sense
on an item: Cut, Copy, Delete, Bring to Front, Send to Back, and Properties. Otherwise,
the menu is populated with Paste, Add Box, and Add Line.

void DiagramView::addBox()

{

addItem(new DiagramBox(canvas()));

}

void DiagramView::addLine()
{

addItem(new DiagramLine(canvas()));
}

190 8. 2D and 3D Graphics

The addBox () and addLine() slots create a DiagramBox or a DiagramLine item on
the canvas and then call addItem() to perform the rest of the work.

void DiagramView::addItem(QCanvasItem *item)
{

delete pendingItem;

pendingItem = item;

setActiveItem(0);

setCursor (crossCursor) ;

}

The addTtem() private function changes the cursor to a crosshair and sets
pendingItemto be the newly created item. The item is not visible in the canvas
until we call show() on it.

When the user chooses Add Box or Add Line from the context menu, the cursor
changes to a crosshair. The item is not actually added until the user clicks on
the canvas.

void DiagramView::contentsMousePressEvent (QMouseEvent *event)
{
if (event->button() == LeftButton && pendingItem) {
pendingItem->move (event->pos().x(), event->pos().y());
showNewItem(pendingItem);
pendingItem = 0;
unsetCursor() ;
} else {
QCanvasItemList items = canvas()->collisions(event->pos());
if (items.empty())
setActiveItem(0);
else
setActiveltem(*items.begin());

}
lastPos = event->pos();

}

If users press the left mouse button while the cursor is a crosshair, they have
already asked to create a box or line, and have now clicked the canvas at the
position where they want the new item to appear. We move the “pending”
item to the position of the click, show it, and reset the cursor to the normal
arrow cursor.

Any other mouse press event on the canvas is interpreted as an attempt to
select or deselect an item. We call collisions () on the canvas to obtain a list
of all the items under the cursor and make the first item the current item. If
the list contains many items, the first one is always the one that is rendered
on top of the others.

void DiagramView::contentsMouseMoveEvent (QMouseEvent *event)
{
if (event->state() & LeftButton) {
if (activeItem) {
activeltem->moveBy(event->pos().x() - lastPos.x(),
event->pos () .y() - lastPos.y());
lastPos = event->pos();

Graphics with Q@Canvas 191

canvas () ->update() ;

}

The user can move an item on the canvas by pressing the left mouse button
on an item and dragging. Each time we get a mouse move event, we move the
item by the horizontal and vertical distance by which the mouse moved and
call update () on the canvas. Whenever we modify a canvas item, we must call
update() to notify the canvas that it needs to redraw itself.

void DiagramView::contentsMouseDoubleClickEvent (QMouseEvent *event)
{

if (event->button() == LeftButton && activeltem
&& activeltem->rtti() == DiagramBox::RTTI) {

DiagramBox *box = (DiagramBox *)activeltem;

bool ok;

QString newText = QInputDialog::getText (
tr("Diagram"), tr("Enter new text:"),
QLineEdit::Normal, box->text(), &ok, this);

if (ok) {

box->setText (newText) ;
canvas () ->update() ;

}

If the user double-clicks an item, we call the item’s rtti() function and com-
pare its return value with DiagramBox: :RTTI (defined as 1001).

Enter new text:

Wice President

Figure 8.12. Changing the text of a DiagramBox item

If theitem is a DiagramBox, we pop up a QInputDialog to allow the user to change
the text shown in the box. The QInputDialog class provides a label, a line editor,
an OK button, and a Cancel button.

void DiagramView::bringToFront ()
{
if (activeItem) {
++maxzZ;
activeltem->setZ(maxZ) ;
canvas () —>update() ;

}

The bringToFront () slot raises the currently active item to be on top of the
other items in the canvas. This is accomplished by setting the item’s z coordi-

192 8. 2D and 3D Graphics

nate to a value that is higher than any other value attributed to an item so far.
When two items occupy the same (x, y) position, the item that has the highest
z value is shown in front of the other item. (If the z values are equal, QCanvas
will break the tie by comparing the item pointers.)

void DiagramView::sendToBack ()
{
if (activeItem) {
--minZ;
activeItem->setZ(minZ);
canvas () ->update() ;

}

The sendToBack () slot puts the currently active item behind all the other items
in the canvas. This is done by setting the item’s z coordinate to a value that is
lower than any other z value attributed to an item so far.

void DiagramView::cut()
{

copy () ;

del();
}

The cut () slot is trivial.

void DiagramView::copy ()
{
if (activeItem) {
QString str;

if (activeItem->rtti() == DiagramBox::RTTI) {

DiagramBox *box = (DiagramBox *)activeItem;

str = QString("DiagramBox %1 %2 %3 %4 %5"
.arg (box->width())
.arg(box->height())
.arg(box->pen().color().name())
.arg(box->brush().color().name())
.arg(box->text());

} else if (activeItem->rtti() == DiagramLine::RTTI) {
DiagramLine *line = (DiagramLine *)activeItem;
QPoint delta = line->endPoint() - line->startPoint();

str = QString("DiagramLine %1 %2 %3")
.arg(delta.x())
.arg(delta.y())

.arg(line->pen().color().name());

}
QApplication::clipboard()->setText (str);

}

The copy () slot converts the active item into a string and copies the string to
the clipboard. The string contains all the information necessary to reconstruct
the item. For example, a black-on-white 320 x 40 box containing “My Left
Foot” would be represented by this string:

Graphics with Q@Canvas 193

DiagramBox 320 40 #000000 #ffffff My Left Foot

We don’t bother storing the position of the item on the canvas. When we
paste the item, we simply put the duplicate near the canvas’s top-left corner.
Converting an object to a string is an easy way to add clipboard support, but it
is also possible to put arbitrary binary data onto the clipboard, as we will see
in Chapter 9 (Drag and Drop).

void DiagramView::paste()

{
QString str = QApplication::clipboard()->text();
QTextIStream in(&str);
QString tag;

in >> tag;

if (tag == "DiagramBox") {
int width;
int height;

QString lineColor;
QString fillColor;
QString text;

in >> width >> height >> lineColor >> fillColor;
text = in.read();

DiagramBox *box = new DiagramBox(canvas());
box->move (20, 20);
box->setSize(width, height);
box->setText (text) ;
box->setPen(QColor(lineColor));
box->setBrush(QColor(fillColor));
showNewItem(box) ;

} else if (tag == "DiagramLine") {
int deltaX;
int deltay;
QString lineColor;

in >> deltaX >> deltaY >> lineColor;

DiagramLine *1line = new DiagramLine(canvas());
line->move (20, 20);

line->setPoints (0, 0, deltaX, deltaYy);
line->setPen(QColor(lineColor));
showNewItem(line);

}

The paste() slot uses QTextIStream to parse the contents of the clipboard.
QTextIStream works on whitespace-delimited fields in a similar way to cin. We
extract each field using the >> operator, except the last field of the DiagramBox
item, which might contain spaces. For this field, we use QTextStream: :read(),
which reads in the rest of the string.

void DiagramView::del ()

{

if (activeltem) {

194 8. 2D and 3D Graphics

QCanvasItem *item = activeltem;
setActiveItem(0);

delete item;
canvas () —>update () ;

}

The del() slot deletes the active item and calls QCanvas: :update() to redraw
the canvas.
void DiagramView: :properties()
{
if (activeItem) {

PropertiesDialog dialog;
dialog.exec(activeItem);

}

The properties() slot pops up a Properties dialog for the active item. The
PropertiesDialog classis a “smart” dialog; we simply need to pass it a pointer
to the item we want it to act on and it takes care of the rest.

Rroperties forBoss i i i [z][x]
hropertics fg L [2][] — Geometey

— Geometry EH |292 3: W IHD 3:
w54 2 vie e = width: [fo0 & Heioht: [50 =]
T [T S T | — Attribute

Tent: Jice President

—&ttributes

Line Color: [N Choose... | Lirie Color: | R Choose... |
Fill Calor: |:| Choose... |
ok I Cancel |

; ; Ok I Cancel |

Figure 8.13. The Properties dialog’s two appearances

The .ui and .ui.h files for the PropertiesDialog are on the CD that accompa-
nies this book.

void DiagramView::showNewItem(QCanvasItem *item)
{

setActiveltem(item);

bringToFront () ;

item->show() ;

canvas () ->update() ;
}

The showNewItem() private function is called from a few places in the code to
make a newly created canvas item visible and active.

void DiagramView::setActiveItem(QCanvasItem *item)

{

Graphics with Q@Canvas 195

if (item != activeltem) {
if (activeltem)
activeltem->setActive(false);
activeltem = item;
if (activeltem)
activeltem—->setActive(true);
canvas () —>update() ;

}

Finally, the setActiveItem() private function clears the old active item’s
“active” flag, sets the activeIten variable, and sets the new active item’s flag.
The item’s “active” flag is stored in gCanvasItem. Qt doesn’t use the flag itself;
it is provided purely for the convenience of subclasses. We use the flag in the
DiagramBox and DiagramLine subclasses because we want them to paint them-
selves differently depending on whether they are active or not.

Let’s now review the code for DiagramBox and DiagramLine.
const int Margin = 2;

void drawActiveHandle(QPainter &painter, const QPoint ¢er)
{
painter.setPen(Qt::black);
painter.setBrush(Qt::gray);
painter.drawRect (center.x() - Margin, center.y() - Margin,
2 * Margin + 1, 2 * Margin + 1);

}

The drawActiveHandle () function is used by both DiagramBox and DiagramLine to
draw a tiny square indicating that an item is the active item.

DiagramBox: :DiagramBox (QCanvas *canvas)
: QCanvasRectangle(canvas)
{
setSize (100, 60);
setPen(black) ;
setBrush(white);
str = "Text";

}

In the DiagramBox constructor, we set the size of the rectangle to 100 x 60. We
also set the pen color to black and the brush color to white. The pen color is
used to draw the box outline and the text, while the brush color is used for the
background of the box.

DiagramBox::~DiagramBox ()

{
hide();

}

The DiagramBox destructor calls hide() on the item. This is necessary for all
classes that inherit from QcanvasPolygonalItem (QCanvasRectangle’s base class)
because of the way QCanvasPolygonalltem works.

196 8. 2D and 3D Graphics

void DiagramBox::setText (const QString &newText)

{
str = newText;
update () ;

}

The setText () function sets the text shown in the box and calls QcanvasIten::
update () to mark this item as changed. The next time the canvas repaints
itself, it will know that it must repaint this item.

void DiagramBox::drawShape(QPainter &painter)
{
QCanvasRectangle: :drawShape (painter) ;

painter.drawText (rect(), AlignCenter, text());

if (isActive()) {
drawActiveHandle(painter, rect().topLeft());
drawActiveHandle(painter, rect().topRight());
drawActiveHandle(painter, rect().bottomLeft());
drawActiveHandle (painter, rect().bottomRight());

}

The drawShape () function is reimplemented from QCanvasPolygonalItemto draw
the text, and if the item is active, the four handles. We use the base class to
draw the rectangle itself.

QRect DiagramBox::boundingRect() const
{
return QRect((int)x() - Margin, (int)y() - Margin,
width() + 2 * Margin, height() + 2 * Margin);
}

The boundingRect () function is reimplemented from QcanvasItem. It is used by
QcCanvas to perform collision-detection and to optimize painting. The rectangle
it returns must be at least as large as the area painted in drawShape().

The default QcanvasRectangle implementation is not sufficient, because it does
not take into account the handles that we paint at each corner of the rectangle
if the item is active.

DiagramLine::DiagramLine(QCanvas *canvas)
: QCanvasLine(canvas)

{
setPoints (0, 0, 0, 99);

}

In the biagramLine constructor, we set the two points that define the line to be
(0, 0) and (0, 99). The result is a 100-pixel-long vertical line.

DiagramLine::~DiagramLine()
{

hide();
}

Again, we must call hide() in the destructor.

Graphics with Q@Canvas 197

void DiagramLine::drawShape(QPainter &painter)
{
QCanvasLine::drawShape (painter) ;
if (isActive()) {
drawActiveHandle (painter, startPoint() + offset());
drawActiveHandle(painter, endPoint() + offset());

}

The drawsShape () function is reimplemented from QcanvasLine to draw handles
at both ends of the line if the item is active. We use the base class to draw the
line itself. The offset() function was implemented in the DiagramLine class
definition. It returns the position of the item on the canvas.

QPointArray DiagramLine::areaPoints() const
{
const int Extra = Margin + 1;
QPointArray points(6);
QPoint pointA = startPoint() + offset();
QPoint pointB = endPoint() + offset();

if (pointA.x() > pointB.x())
swap (pointA, pointB);

points[0] = pointA + QPoint(-Extra, -Extra);
points[1] = pointA + QPoint(-Extra, +Extra);
points[3] = pointB + QPoint(+Extra, +Extra);
points[4] = pointB + QPoint(+Extra, -Extra);
if (pointA.y() > pointB.y()) {

points[2] = pointA + QPoint(+Extra, +Extra);

points[5] = pointB + QPoint(-Extra, -Extra);
} else {

points[2] = pointB + QPoint(-Extra, +Extra);

points[5] = pointA + QPoint(+Extra, -Extra);

}

return points;

}

The areaPoints () function plays a similar role to the boundingRect () function
in DiagramBox. For a diagonal line, and indeed for most polygons, a bounding
rectangle is too crude an approximation. For these, we must reimplement
areaPoints() and return the outline of the area painted by the item. The
QCanvasLine implementation already returns a decent outline for a line, but it
doesn’t take the handles into account.

The first thing we do is to store the two points in pointA and pointB and to
ensure that pointaisto the left of pointB, by swapping them if necessary using
swap() (defined in <algorithm>). Then there are only two cases to consider:
ascending and descending lines.

The bounding area of a line is always represented by six points, but these
points vary depending on whether the line is ascending or descending. Never-
theless, four of the six points (numbered 0, 1, 3, and 4) are the same in both cas-
es. For example, points 0 and 1 are always located at the top-left and bottom-

198 8. 2D and 3D Graphics

left corners of handle A;in contrast, point 2 is located at the bottom-right cor-
ner of handle A for an ascending line and at the bottom-left corner of handle
B for a descending line.

Figure 8.14. The bounding area of a DiagramLine

Considering how little code we have written, the Diagramview widget already
provides considerable functionality, with support for selecting and moving
items and for context menus.

One thing that is missing is that the handles shown when an item is active
cannot be dragged to resize the item. If we wanted to change that, we would
probably take a different approach to the one we have used here. Instead of
drawing the handles in the items’ drawShape () functions, we would probably
make each handle a canvas item. If we wanted the cursor to change when
hovering over a handle, we would call setCursor() in real time as it is moved.
For this to work, we would need to call setMouseTracking (true) first, because
normally Qt only sends mouse move events when a mouse button is pressed.

Another obvious improvement would be to support multiple selections and
item grouping. The Q¢ Quarterly article “Canvas Item Groupies”, available on-
line at http://doc.trolltech.com/qq/qq05-canvasitemgrouping.html, presents
one way to achieve this.

This section has provided a working example of QCanvas and QCanvasvView use,
but it has not covered all of gcanvas’s functionality. For example, canvas items
can be set to move on the canvas at regular intervals by calling setvelocity().
See the documentation for gcanvas and its related classes for the details.

Printing
Printing in Qt is similar to drawing on a widget or on a pixmap. It consists of
the following steps:

1. Create a Qprinter to serve as the “paint device”.

2. Call gprinter::setup() to pop up a print dialog, allowing the user to
choose a printer and to set a few options.

3. Create a QrPainter to operate on the Qprinter.

Printing 199

4. Draw a page using the Qrainter.
5. Call gprinter: :newPage () to advance to the next page.

6. Repeat steps 4 and 5 until all the pages are printed.

On Windows and Mac OS X, gprinter uses the system’s printer drivers. On
Unix, it generates PostScript and sends it to 1p or 1pr (or to whatever program
has been set using Qprinter::setPrintProgram()).

=~ AN o T

SPREADSHEET
1.0

Figure 8.15. Printing an OvenTimer, a QCanvas, and a QImage

Let’s start with some simple examples that all print on a single page. The first
example prints an OvenTimer widget:

void PrintWindow: :printOvenTimer (OvenTimer *ovenTimer)
{
if (printer.setup(this)) {
QPainter painter(&printer);
QRect rect = painter.viewport();
int side = QMIN(rect.width(), rect.height());
painter.setViewport (0, 0, side, side);
painter.setWindow(-50, -50, 100, 100);
ovenTimer->draw(&painter);

}

We assume that the pPrintwindow class has a member variable called printer
of type Qprinter. We could simply have created the Qprinter on the stack in
printOvenTimer (), but then it would not remember the user’s settings from one
print run to another.

We call setup() to pop up a print dialog. It returns true if the user clicked the
OK button; otherwise, it returns false. After the call to setup(), the QPrinter
object is ready to use.

We create a Qrainter to draw on the Qprinter. Then we make the painter’s
viewport square and initialize the painter’s window to (-50, -50, 100, 100),
the rectangle expected by ovenTimer. We call draw() to do the painting. If we

200 8. 2D and 3D Graphics

didn’t bother making the viewport square, the ovenTimer would be vertically
stretched to fill the entire page height.

By default, the grainter’s window is initialized so that the printer appears
to have a similar resolution as the screen (usually somewhere between 72
and 100 dots per inch), making it easy to reuse widget-painting code for
printing. Here, it didn’t matter, because we set our own window to be (=50,
-50, 100, 100).

Printing an oOvenTimer isn’t a very realistic example, because the widget is
meant for on-screen user interaction. But for other widgets, such as the
Plotter widget we developed in Chapter 5, it makes lots of sense to reuse the
widget’s painting code for printing.

A more practical example is printing a QCanvas. Applications that use it often
need to be able to print what the user has drawn. This can be done in a generic
way as follows:

void PrintWindow::printCanvas (QCanvas *canvas)
{
if (printer.setup(this)) {
QPainter painter(&printer);
QRect rect = painter.viewport();
QSize size = canvas->size();

size.scale(rect.size(), QSize::ScaleMin);
painter.setViewport(rect.x(), rect.y(),
size.width(), size.height());

painter.setWindow(canvas->rect());
painter.drawRect (painter.window()) ;
painter.setClipRect (painter.viewport());

QCanvasItemList items = canvas->collisions(canvas->rect());
QCanvasItemList::const_iterator it = items.end();
while (it != items.begin()) {

--1it;

(*it)->draw(painter);

}

This time, we set the painter’s window to the canvas’s bounding rectangle, and
we restrict the viewport to a rectangle with the same aspect ratio. To accom-
plish this, we use QSize::scale() with ScaleMin as its second argument. For
example, if the canvas has a size of 640 x 480 and the painter’s viewport has
a size of 5000 x 5000, the resulting viewport size that we use is 5000 x 3750.

We call collisions () with the canvas’s rectangle as argument to obtain the list
of all visible canvas items sorted from highest to lowest z value. We iterate
over the list from the end to paint the items with a lower z value before those
with a higher z value and call gQcanvasItem: :draw() on them. This ensures that
the items that appear nearer the front are drawn on top of the items that are
further back.

Our third example is to draw a QImage.

Printing 201

void PrintWindow::printImage(const QImage &image)
{
if (printer.setup(this)) {
QPainter painter(&printer);
QRect rect = painter.viewport();
QSize size = image.size();

size.scale(rect.size(), QSize::ScaleMin);
painter.setViewport(rect.x(), rect.y(),
size.width(), size.height());

painter.setWindow(image.rect());
painter.drawImage(0, 0, image);

}

We set the window to the image’s rectangle and the viewport to a rectangle
with the same aspect ratio, and we draw the image at position (0, 0).

Printing items that take up no more than a single page is simple, as we have
seen. But many applications need to print multiple pages. For those, we need
to paint one page at a time and call newpage() to advance to the next page.
This raises the problem of determining how much information we can print
on each page.

There are two approaches to handling multi-page documents with Qt:

* We can convert the data we want to HTML and render it using QSimple-
RichText, Qt’s rich text engine.

* We can perform the drawing and the page breaking by hand.
We will review both approaches in turn.

As an example, we will print a flower guide: a list of flower names with a
textual description. Each entry in the guide is stored as a string of the format
“name: description”, for example:

Miltonopsis santanae: An most dangerous orchid species.

Since each flower’s data is represented by a single string, we can represent all
the flowers in the guide using one QStringList.

Here’s the function that prints a flower guide using Qt’s rich text engine:

void PrintWindow::printFlowerGuide(const QStringList &entries)
{
QString str;
QStringList::const_iterator it = entries.begin();
while (it != entries.end()) {
QStringList fields = QStringList::split(": ", *it);
QString title = QStyleSheet::escape(fields[0]);
QString body = QStyleSheet::escape(fields[1]);

str += "<table width=\"100%\" border=1 cellspacing=0>\n"
"<tr><td bgcolor=\"lightgray\">"
1<h><i>" + title + "</i>\n<tr><td>"
+ body + "\n</table>\n
\n";

202 8. 2D and 3D Graphics

++it;
}
printRichText (str);

“Aponogeton distachyos
“The Cape pondweed (water hawthor) is a deciduous perenrial that has floating, Nuphar lutea

ablong, ark green leaves which are sometimes spiashed purple. The waxy-whis The Yellow wate Il has smal (6 cm ciameter) yellow lowers that are

flowers have a charactetsic Torked appearance, sweat scen and black siamens. botile-shaped and sicky smelling. They are held above a mai of broad, oval,
They appear rom early spring urtlfll. They grow in deep or shallow water and mid green leaves which are about 40 cm wide, giing he piant a spread of up 1o
spreadlo .2m. 1.5 m. The seed heads are rounded and warly. This hardy deciduous perenial

thrives in deep waler, in sun or shade, and is useful for a water-liy effect where
Nymphaea will not grow.

Cabomba caroliniana

The Fish grass (or fanworl or Washington grass) is a useful oxygenalor for ponds.

Itis a deciduous or sem evergreen submerged perennial that is used by fish as a Orontium aquaticum

Sourcs of food and as a ace inwhich to spawn. Plants form spreacing hum mocks The Golden club's flowers lack the spaihe typicalof other aroids, leaving the

ol fan shaped, coarsly divided leaves which are bright green Tiny whie flowers central yellow and while spadi o provide color. A deciduous perenial the golden
appear in the summer. club grows equally welin shallow cr deep waler. In spring, the pencil ke flower

Spikes (spadices) emerge from among the flaaling mass of waxy leaves which are
a bluish or greyish green. Plants grow to 25 cm high spreading up 1o 60 cm. Large
Caltha palustris seeds develop later in the summer and are used to propagate plants whie they
The Marsh marigold (or kingcup) is a deciduous perennial that graws in shallow are st resh

water around the edges of ponds. It is equally well suited 1o a bog garden, moist
rock garden or herbaceous border. The rounded dark green leaves sel oft s large,
cup shaped golden yellow flowers. Plants can grow 1o 60 cm in height, witha Trapa natans

spread of 45 cm. The double flowered culivar Flore Plena’ only reaches 10 am. The Jesu's nut (or waler chestnui) has mid green diamond shaped leaves with
deeply toothed edges that grow in neal rosaties. The center of each leal s often
marked with deep purple blotches. White flowers are produced in summer. Each
floating plant can spread 1o 23 G

Ceratophylium demersum
The Homwor is a deciduous perennial that produces feathery submerged foliage
It sometimes floats alarge area hisa and
grows best in cool deep water. It has 0 rools.

Zantedeschia aethiopica

The Arum iy s a Soulh African natve thal grows wel In shallow water_ i flowers
throughaut the summer, with the erect funnel shaped spathes being held well
above the arrow-shaped glossy, deep green leaves. Each spathe surrounds a

Juncus effusus 'Spiralis"

The Carkscrew rush is a tufted evergreen perennial with mid-green lealless stems central yellow spadix. The leaves and flowering stems arise from a tuber. Plants
which are twisted and curled like a corkscrew. The stems often lie on the ground can reach up 1o 90 cm in height, spreading to 45 cm.

The greenish-brown flowers appear in summer. Plants are best used at the edge
of a pond, so that the stems can be seen against the reflective water surtace.
Sirong plants can send up 90 cm-tal twisted shoots which are used in modem
flower arranging

Figure 8.16. Printing a flower guide using QSimpleRichText

The first step is to convert the data into HTML. Each flower becomes an
HTML table with two cells. We use QStyleSheet::escape() to replace the
special characters ‘&’, ‘<’, >’ with the corresponding HTML entities (“&”,
“&It;”, “>”). Then we call printRichText () to print the text.

const int LargeGap = 48;

void PrintWindow::printRichText (const QString &str)
{
if (printer.setup(this)) {
QPainter painter(&printer);
int pageHeight = painter.window().height() - 2 * LargeGap;
QSimpleRichText richText(str, bodyFont, "", 0, 0,
pageHeight) ;
richText.setWidth(&painter, painter.window().width());
int numPages = (int)ceil((double)richText.height()
/ pageHeight) ;
int index;

for (int 1 = 0; 1 < (int)printer.numCopies(); ++i) {
nt j = 0; j < numPages; ++j) {
(1>01[3>0)
printer.newPage() ;

\'2

if (printer.pageOrder()
== QPrinter::LastPageFirst) {
index = numPages - j - 1;

Printing 203

} else {
index = j;
}
printPage(&painter, richText, pageHeight, index);

}

The printRichText () function takes care of printing an HTML document. It
can be reused “as is” in any Qt application to print arbitrary HTML.

We compute the height of one page based on the window size and the size of
the gap we want to leave at the top and bottom of the page for a header and
a footer. Then we create a QSimpleRichText object containing the HTML data.
The last argument to the QSimpleRichText constructor is the page height;
QSimpleRichText uses it to produce nice page breaks.

(0,0)
LargeGap (0, LargeGap) window
pageHeight flower entries print area

LargeGap [page number]

Figure 8.17. The flower guide’s page layout

Then we print each page. The outer for loop iterates as many times as nec-
essary to produce the number of copies requested by the user. Most printer
drivers support multiple copies, so for those QPrinter::numCopies() always
returns 1. If the printer driver doesn’t support multiple copies, numCopies ()
returns the number of copies requested by the user, and the application is
responsible for printing that amount. In the previous examples, we ignored
numCopies () for the sake of simplicity.

The inner for loop iterates through the pages. If the page isn’t the first page,
we call newpage () to flush the old page and start painting on a fresh page. We
call printPage() to paint each page.

The print dialog allows the user to print the pages in reverse order. It is our
responsibility to honor that option.

204 8. 2D and 3D Graphics

We assume that printer, bodyFont, and footerFont are member variables of the
PrintWindow class.

void PrintWindow::printPage(QPainter *painter,
const QSimpleRichText &richText,
int pageHeight, int index)

QRect rect(0, index * pageHeight + LargeGap,
richText.width(), pageHeight);

painter->saveWorldMatrix() ;

painter->translate(0, -rect.y());

richText.draw(painter, 0, LargeGap, rect, colorGroup());
painter->restoreWorldMatrix() ;

painter->setFont (footerFont) ;
painter->drawText (painter->window(), AlignHCenter | AlignBottom,
QString::number (index + 1));

}

The printPage() function prints the (index + 1)-th page of the document. The
page consists of some HTML and of a page number in the footer area.

We translate the Qrainter and call draw() with a position and rectangle spec-
ifying the portion of the rich text we want to draw. It might help to visualize
the rich text as a single very long page that must be cut into smaller portions,
each of height pageHeight.

Then we draw the page number centered at the bottom of the page. If we
wanted to have a header on each page, we would just use an extra draw-
Text () call.

The LargeGap constant is set to 48. Assuming a screen resolution of 96 dots
per inch, this is half an inch (12.7 mm). To obtain a precise length regardless
of screen resolution, we could have used the QPaintDeviceMetrics class as
follows:

QPaintDeviceMetrics metrics(&printer);
int LargeCap = metrics.logicalDpiY() / 2;

Here’s one way we can initialize bodyFont and footerFont in the PrintWindow
constructor:

bodyFont = QFont ("Helvetica", 14);
footerFont = bodyFont;

Let’s now see how we can draw a flower guide using Qpainter. Here’s the new
printFlowerGuide () function:

void PrintWindow::printFlowerGuide(const QStringList &entries)
{
if (printer.setup(this)) {
QPainter painter(&printer);
vector<QStringList> pages;
int index;

paginate(&painter, &pages, entries);

Printing 205

for (int 1 = 0; 1 < (int)printer.numCopies(); ++1) {
for (int j = 0; j < (int)pages.size(); ++3j) {
if (1 >01]] 3 >0)
printer.newPage() ;

if (printer.pageOrder() == QPrinter::LastPageFirst) {
index = pages.size() - j - 1;

} else {
index = j;

}

printPage(&painter, pages, index);

}

The first thing we do after setting up the printer and constructing the painter
is to call the paginate() helper function to determine which entry should
appear on which page. The result of thisis a vector of QStringLists, with each
QstringList holding the entries for one page.

For example, let’s suppose that the flower guide contains 6 entries, which we
will refer to as A, B, C, D, E, and F. Now let’s suppose that there is room for A
and B on the first page, C, D, and E on the second page, and F on the third page.
The pages vector would then have the list [A, B]at index position 0, the list [C,
D, E] at index position 1, and the list [F] at index position 2.

The rest of the function is nearly identical to what we did earlier in printRich-
Text (). The printPage() function, however, is different, as we will see shortly.

void PrintWindow::paginate(QPainter *painter,
vector<QStringList> *pages,
const QStringList &entries)

QStringList currentPage;
int pageHeight = painter->window().height() - 2 * LargeGap;
int y = 0;

QStringList::const_iterator it = entries.begin();
while (it != entries.end()) {
int height = entryHeight(painter, *it);
if (y + height > pageHeight && !currentPage.empty()) {
pages—>push_back (currentPage) ;
currentPage.clear();
y = 0;
}
currentPage.push_back(*it);
y += height + MediumGap;
++1t;
}
if (!currentPage.empty())
pages—>push_back (currentPage) ;

206

8. 2D and 3D Graphics

The paginate() function distributes the flower guide entries into pages. It
relies on the entryHeight () function, which computes the height of one entry.

Aponogeton distachyos

The Cape pondweed (water hawthor) is a deciduous perennial that has floating,
oblong, dark green

flowers have a characleristic ‘orked" appearance, sweet scent and black stamens.
They appear from early spring unti fall. They grow in deep or shallow water and
spreadto 12m

Nuphar lutea

The Yellow water lily has small (6 om diameter) yellow flowers that are boltle-shaped
and sickly smelling. They are held above a mat of broad, oval, mid-green leaves
which are abaut 40 cm wide, gving the plant a spread of up 10 1.5 m. The seed
heads are rounded and warty. This hardy deciduous perennial thrives in deep water,
in sun or shade, and is useful for a water-lly effect where Nymphaea will not grow.

Cabomba caroliniana

The Fish grass (or fanwort or Washinglon grass) is a useful oxygenator for ponds. It
fishasa

per
source of food and as a place in which 1o spawn. Plants form spreading hummacks
of fan shaped, coarsly divided leaves which are bright green. Tiny white flowers
appear inthe summer.

Orontium aquaticum

Caltha palustris

The Golden clubs flowers lack the spathe typical of other aroids, leaving the central
Yellow and white spacix 1o provide color. A decicious perennial, the goiden club
grows equally well n shallow or deep water. In spring, the pencil-ike flower spikes
(spadices) emerge from among the floating mass of waxy leaves which are a bluish
o greyish green. Planis grow to 25 cm high spreading up o 60 cm. Large seeds
develop later in the summer and are used 1o propagate piants while they are stil
fresh

around the edges of ponds. It s equally well suited to a bog garden, moist rock
‘garden or herbaceaus border. The rounded dark green leaves set oft s large,
cup-shaped golden-yellow flowers. Planis can grow fo 60 cm in height, with a spread
of 45 cm. The double-flowered cultivar Flore Plena’ only reaches 10 cm.

“The Marsh marigold (or kingeup) Is a deciduous perennial Ihal grows in shallow water|

Trapa natans

2

The Jesults nut (or water chestnui] has mid-green diamond-shaped leaves with
deeply toothed edges thal grow in neat rosettes. The center of each leat is often

biotches. White i duced in summer. Each
floating plant can spread to 23 cm.

The Hormwort s hat foliage. I
‘sometimes floats and spreads over a large area. Itis a good oxygenator and grows
best in cool deap water. It has no roots.

Juncus effusus 'Spiralis’

The is a lufted evergreen per mid-green
‘which are twisted and curled like a corkscrew. The stems often lie on the ground. The
greenisi-brown flowers appear n summer. Plants ae best used at the edge of a
pond, so that the stems can be seen against the reflective water surlace. Strong

I d up 90 em-al used in modern flower

arranging.

“The Arum lily is a South African native that grows well in shallow water. It flowers
with the erect 9 above

o
the ped glossy,
spadix. The leaves and flowering stems arise from a tuber. Plants can reach up to 90
cm in height, spreading o 45 cm

Figure 8.18. Printing a flower guide using QPainter

We iterate through the entries and append them to the current page until we
come to an entry that doesn’t fit; then we append the current page to the pages
vector and start a new page.

SmallGap e

i SmallGap

3 SmallGap

% SmallGap
SmallGap

MediumGap§

§ SmallGap

Figure 8.19. A flower entry’s layout

int PrintWindow::entryHeight (QPainter *painter, const QString &entry)

{

QStringList fields = QStringList::split(": ", entry);

QString title = fields[0];
QString body = fields[1];

int textWidth = painter->window().width() - 2 * SmallGap;
int maxHeight = painter->window().height();

Printing

207

}

painter->setFont (titleFont);
QRect titleRect = painter->boundingRect(0, 0,
textWidth, maxHeight,

WordBreak, title);
painter->setFont (bodyFont) ;
QRect bodyRect = painter->boundingRect (0, 0,

textWidth, maxHeight,

WordBreak, body);
return titleRect.height() + bodyRect.height() + 4 * SmallGap;

The entryHeight() function uses QPainter::boundingRect() to compute the
vertical space needed by one entry. Figure 8.19 shows the layout of a flower
entry and the meaning of the SmallGap and MediumGap constants.

void PrintWindow::printPage(QPainter *painter,

}

const vector<QStringList> &pages,
int index)

painter->saveWorldMatrix() ;
painter->translate(0, LargeGap);
QStringList::const_iterator it = pages[index] .begin();
while (it != pages[index].end()) {
QStringList fields = QStringList::split(": ", *it);
QString title = fields[0];
QString body = fields[1];
printBox(painter, titleFont, title, lightGray);
printBox(painter, bodyFont, body, white);
painter->translate(0, MediumGap);
++1it;
}

painter->restoreWorldMatrix() ;

painter->setFont (footerFont) ;
painter->drawText (painter->window(), AlignHCenter | AlignBottom,
QString::number (index + 1));

The printPage() function iterates through all the flower guide entries and
prints them using two calls to printBox(): one for the title (the flower’s name)
and one for the body (its description). It also draws the page number centered
at the bottom of the page.

void PrintWindow::printBox (QPainter *painter, const QFont &font,

{

const QString &str, const QBrush &brush)

painter->setFont (font) ;

int boxWidth = painter->window().width();
int textWidth = boxWidth - 2 * SmallGap;
int maxHeight = painter->window().height();

QRect textRect = painter->boundingRect (SmallGap, SmallGap,
textWidth, maxHeight,
WordBreak, str);

int boxHeight = textRect.height() + 2 * SmallGap;

208 8. 2D and 3D Graphics

painter->setPen(QPen(black, 2, SolidLine));
painter->setBrush(brush) ;
painter->drawRect (0, 0, boxWidth, boxHeight) ;
painter->drawText (textRect, WordBreak, str);
painter->translate(0, boxHeight);

}

The printBox () function draws the outline of a box, then draws the text inside
the box.

If the user prints a long document, or requests multiple copies of a short
document, it is usually a good idea to pop up a QProgressDialog to give the user
the opportunity of canceling the printing operation (by clicking Cancel). Here’s
a modified version of printFlowerGuide() that does this:

void PrintWindow::printFlowerGuide(const QStringList &entries)
{
if (printer.setup(this)) {
QPainter painter(&printer);
vector<QStringList> pages;
int index;

paginate(&painter, &pages, entries);
int numSteps = printer.numCopies() * pages.size();

int step = 0;
QProgressDialog progress(tr("Printing file..."),

tr("Cancel"), numSteps, this);
progress.setModal (true) ;
for (int 1 = 0; 1 < (int)printer.numCopies(); ++1i) {
for (int j = 0; j < (int)pages.size(); ++j) {

progress.setProgress(step);
gApp->processEvents () ;
if (progress.wasCanceled()) {
printer.abort();
return;
}

++step;

if (1 >01] 3 >0)
printer.newPage() ;

if (printer.pageOrder() == QPrinter::LastPageFirst) {
index = pages.size() - j - 1;

} else {
index = j;

}

printPage(&painter, pages, index);

}

When the user clicks Cancel, we call gprinter: :abort () to stop the printing op-
eration.

Graphics with OpenGL 209

Graphics with OpenGL

OpenGLis a standard API for rendering 2D and 3D graphics. Qt applications
can draw OpenGL graphics by using Qt’s QGL module. This section assumes
that you are familiar with OpenGL. If OpenGL is new to you, a good place to
start learning it is http: //www. opengl.org/.

Drawing graphics with OpenGL from a Qt application is straightforward:
We must subclass QGLWidget, reimplement a few virtual functions, and link
the application against the QGL and OpenGL libraries. Because QGLWidget
inherits from Qwidget, most of what we already know still applies. The main
difference is that we use standard OpenGL functions to perform the drawing
instead of Qpainter.

806 Cube

Figure 8.20. The Cube application

To show how this works, we will review the code of the Cube application shown
in Figure 8.20. The application presents a 3D cube with faces of different
colors. The user can rotate the cube by pressing a mouse button and dragging.
The user can set the color of a face by double-clicking it and choosing a color
from the QColordialog that pops up.

class Cube : public QGLWidget
{
public:
Cube (QWidget *parent = 0, const char *name = 0);

protected:
void initializeGL();
void resizeGL(int width, int height);
void paintGL();
void mousePressEvent (QMouseEvent *event);
void mouseMoveEvent (QMouseEvent *event);
void mouseDoubleClickEvent (QMouseEvent *event);

210

8. 2D and 3D Graphics

private:

}i

void draw();
int faceAtPosition(const QPoint &pos);

GLfloat rotationX;
GLfloat rotationy;
GLfloat rotationZ;
QColor faceColors[6];
QPoint lastPos;

Cube inherits from QGLWidget. The initializeGL(), resizeGL(), and paintGL()
functions are reimplemented from QcLwidget. The mouse event handlers are
reimplemented from Qiwidget as usual. QGLWidget is defined in <qgl.h>.

Cube: :Cube (QWidget *parent, const char *name)

{

}

: QGLWidget (parent, name)

setFormat (QGLFormat (DoubleBuffer | DepthBuffer));
rotationX = 0;

rotationY = 0;

rotationZ = 0;
faceColors[0] = red;
faceColors[1l] = green;
faceColors[2] = blue;
faceColors[3] = cyan;
faceColors[4] = yellow;
faceColors[5] = magenta;

In the constructor, we call QGLWidget::setFormat() to specify the OpenGL
display context, and we initialize the class’s private variables.

void Cube::initializeGL()

{

}

gglClearColor(black);
glShadeModel (GL_FLAT) ;
glEnable(GL_DEPTH_TEST) ;
glEnable(GL_CULL_FACE) ;

The initializeGL() function is called once before paintGL() is called. This is
the place where we can set up the OpenGL rendering context, define display
lists, and perform other initializations.

All the code is standard OpenGL, except for the call to QcLwidget’s qglClear-
Color () function. If we wanted to stick to standard OpenGL, we would call g1-
ClearColor() in RGBA mode and glClearIndex() in color index mode instead.

void Cube::resizeGL(int width, int height)

{

glviewport(0, 0, width, height);
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();

GLfloat x = (GLfloat)width / height;
glFrustum(-x, x, -1.0, 1.0, 4.0, 15.0);

Graphics with OpenGL 211

glMatrixMode (GL_MODELVIEW) ;
}

The resizecL() function is called once before paintGL() is called the first
time, but after initializeGL() is called. This is the place where we can set up
the OpenGL viewport, projection, and any other settings that depend on the
widget’s size.

void Cube::paintGL()

{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;
draw() ;

}

The paintGL() function is called whenever the widget needs to be repainted.
This is similar to Qwidget::paintEvent(), but instead of Qrainter functions
we use OpenGL functions. The actual drawing is performed by the private
function draw().

void Cube::draw()

{

static const GLfloat coords[6] [4] [3] = {
{ { +1.0, -1.0, +1.0 }, { +1.0, -1.0, -1.0 }
{+1.0, +1.0, -1.0}, { +1.0, +1.0, +1.0 } }
{{-1.0, -1.0, -2.0}, { -1.0, -1.0, +1.0}
{-1.0, +1.0, +1.0}, { -1.0, +1.0, -1.0 } }
{ { +1.0, -1.0, -1.0}, { -1.0, -1.0, -1.0}
{-1.0, +1.0, -1.0 3}, { +1.0, +1.0, -1.0 1} }
{ {-1.0, -1.0, +1.0 }, { +1.0, -1.0, +1.0 }
{ #1.0, +1.0, +1.0}, { -1.0, +1.0, +1.0 } }
{{-1.0, -1.0, -1.0 }, { +1.0, -1.0, -1.0 },
{ +1.0, -1.0, +1.0}, { -1.0, -1.0, +1.0 } }
{ { -1.0, +1.0, +1.0 }, { +1.0, +1.0, +1.0}
{ +1.0, +1.0, -1.0}, { -1.0, +1.0, -1.0 } }
i
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();
glTranslatef (0.0, 0.0, -10.0);
glRotatef (rotationX, 1.0, 0.0, 0.0);
glRotatef (rotationy, 0.0, 1.0, 0.0);
glRotatef (rotationZ, 0.0, 0.0, 1.0);

for (int 1 = 0; 1 < 6; ++1) {
glLoadName (i) ;
glBegin(GL_QUADS) ;
gglColor(faceColors[il);
for (int j = 0; J < 4; ++3) |
glvertex3f (coords([i] [j]1[0], coords[i]l[j][1],
coords[i] [§]1[2]);
}
glEnd() ;

212 8. 2D and 3D Graphics

In draw(), we draw the cube, taking into account the x, y, and z rotations and
the colors stored in the faceColors array. Everything is standard OpenGL, ex-
cept for the gglcolor() call. We could have used one of the OpenGL functions
glColor3d() or glIindex(), depending on the mode.

void Cube::mousePressEvent (QMouseEvent *event)
{
lastPos = event->pos();

}

void Cube::mouseMoveEvent (QMouseEvent *event)

{
GLfloat dx = (GLfloat) (event->x() - lastPos.x()) / width();
GLfloat dy = (GLfloat) (event->y() - lastPos.y()) / height();

if (event->state() & LeftButton) {
rotationX += 180 * dy;
rotationY += 180 * dx;
updateGL() ;

} else if (event->state() & RightButton) {
rotationX += 180 * dy;
rotationZ += 180 * dx;
updateGL() ;

}

lastPos = event->pos();

}

The mousePressEvent () and mouseMoveEvent () functions are reimplement from
Qwidget to allow the user to rotate the view by clicking and dragging. The
left mouse button allows the user to rotate around the x and y axes, the right
mouse button around the x and z axes.

After modifying the rotationx, rotation¥, and/or rotationZ variables, we call
updateGL() to redraw the scene.

void Cube::mouseDoubleClickEvent (QMouseEvent *event)
{

int face = faceAtPosition(event->pos());

if (face != -1) {
QColor color = QColorDialog::getColor(faceColors[facel],
this);
if (color.isValid()) f{
faceColors[face] = color;
updateGL() ;

}

The mouseDoubleClickEvent () is reimplemented from Qwidget to allow the user
to set the color of a cube face by double-clicking it. We call the private function
faceAtPosition() to determine which cube face, if any, is located under the
cursor. If a face was double-clicked, we call QColorDialog: :getColor () toobtain
a new color for that face. Then we update the faceColors array with the new
color, and we call updateGL() to redraw the scene.

Graphics with OpenGL 213

int Cube::faceAtPosition(const QPoint &pos)
{

const int MaxSize = 512;

GLuint buffer[MaxSize];

GLint viewport([4];

glGetIntegerv(GL_VIEWPORT, viewport);
glSelectBuffer(MaxSize, buffer);
glRenderMode (GL_SELECT) ;

glInitNames () ;
glPushName (0) ;

glMatrixMode (GL_PROJECTION) ;

glPushMatrix() ;

glLoadIdentity();

gluPickMatrix((GLdouble)pos.x(),
(GLdouble) (viewport[3] - pos.y()),
5.0, 5.0, viewport);

GLfloat x = (GLfloat)width() / height();

glFrustum(-x, x, -1.0, 1.0, 4.0, 15.0);

draw() ;

glMatrixMode (GL_PROJECTION) ;

glPopMatrix();

if (!glRenderMode (GL_RENDER))
return -1;
return buffer[3];

}

The faceaAtpPosition() function returns the number of the face at a certain
position on the widget, or -1 if there is no face at that position. The code for
determining this in OpenGL is a bit complicated. Essentially, what we do is
render the scene in GL_SELECT mode to take advantage of OpenGL’s picking
capabilities and then retrieve the face number (its “name”) from the OpenGL
hit record.

Here’s main. cpp:
#include <gapplication.h>
#include "cube.h"

int main(int argc, char *argv([])
{
QApplication app(argc, argv);
if (!QGLFormat::hasOpenGL()
gFatal ("This system has no OpenGL support");

Cube cube;
cube.setCaption(QObject::tr("Cube"));
cube.resize (300, 300);
app.setMainWidget (&cube) ;

cube. show() ;
return app.exec();

214 8. 2D and 3D Graphics

If the user’s system doesn’t support OpenGL, we print an error message to the
console and abort using Qt’s gFatal () global function.

To link the application against the QGL and OpenGL libraries, the .pro file
needs this entry:

CONFIG += opengl

That completes the Cube application. For more information about the QGL
module, see the reference documentation for QGLWidget, QGLFormat, QGLContext,
and QGLColormap.

* Enabling Drag and Drop

* Supporting Custom Drag
Types

* Advanced Clipboard
Handling

Drag and Drop

Drag and drop is a modern and intuitive way of transferring information
within an application or between different applications. It is often provided
in addition to clipboard support for moving and copying data.

In this chapter, we will begin by showing how to add drag and drop support to
a Qt application. Then we will reuse the drag and drop code to implement clip-
board support. This code reuse is possible because both mechanisms rely on
QMimeSource, an abstract base class that provides data in different formats.

Enabling Drag and Drop

Drag and drop involves two distinct actions: dragging and dropping. Widgets
can serve as drag sites, as drop sites, or as both.

Drag and drop is a powerful mechanism for transferring data between appli-
cations. But in some cases, it’s possible to implement drag and drop without
using Qt’s drag and drop facilities. If all you want to do is to move data within
one widget in one application, it is usually simpler to reimplement the widget’s
mouse event handlers. This is the approach we took in the Diagramview widget
in Chapter 8 (p. 190).

Our first example shows how to make a Qt application accept a drag initiated
by another application. The Qt application is a main window with a QTextEdit
asits central widget. When the user drags a file from the desktop or from a file
explorer and drops it onto the application, the application loads the file into
the QTextEdit.

Here’s the definition of the Mainwindow class:

class MainWindow : public QMainWindow

{

215

216 9. Drag and Drop

Q_OBJECT
public:
MainWindow(QWidget *parent = 0, const char *name = 0);

protected:
void dragEnterEvent (QDragEnterEvent *event);
void dropEvent (QDropEvent *event);

private:
bool readFile(const QString &fileName);
QString strippedName (const QString &fullFileName) ;

QTextEdit *textEdit;
Vi

The MainWindow class reimplements dragEnterEvent() and dropEvent() from
Qwidget. Since the purpose of the example is to show drag and drop, much
of the functionality we would expect to be in a main window class has been
omitted.

MainWindow: :MainWindow (QWidget *parent, const char *name)
: QMainWindow(parent, name)

{
setCaption(tr("Drag File"));
textEdit = new QTextEdit(this);
setCentralWidget (textEdit);
textEdit->viewport () ->setAcceptDrops (false);
setAcceptDrops (true) ;

}

In the constructor, we create a QTextEdit and set it as the central widget. We
disable dropping on the QTextEdit’s viewport and enable dropping on the
main window.

The reason we must disable dropping on the QTextEdit is that we want to take
over drag and drop handling ourselves in our MainWindow subclass. By default,
QTextEdit accepts textual drags from other applications, and if the user drops
a file onto it, it will insert the file name into the text. Since we want to drop
the entire contents of the file rather than the file’s name, we cannot make use
of QTextEdit’s drag and drop functionality and must implement our own.

Because drop events are propagated from child to parent, we get the drop
events for the whole main window, including those for the QTextEdit, in Main-
Window.

void MainWindow::dragEnterEvent (QDragEnterEvent *event)

{
event->accept (QUriDrag: : canDecode (event)) ;

}

The dragEnterEvent() is called whenever the user drags an object onto a
widget. If we call accept (true) on the event, we indicate that the user can drop
the drag object on this widget; if we call accept (false), we indicate that the
widget can’t accept the drag. Qt automatically changes the cursor to indicate
to the user whether or not the widget is a legitimate drop site.

Enabling Drag and Drop 217

Here we want the user to be allowed to drag files, but nothing else. To do so,
we ask QUriDrag, the Qt class that handles file drags, whether it can decode
the dragged object. The class can more generally be used for any universal
resource identifier (URI), such as HTTP and FTP paths; hence the name
QUriDrag.

void MainWindow::dropEvent (QDropEvent *event)
{
QStringList fileNames;
if (QUriDrag::decodeLocalFiles(event, fileNames)) {
if (readFile(fileNames[O0]))
setCaption(tr("%l - Drag File"
.arg(strippedName(fileNames[0])));

}

The dropEvent () is called when the user drops an object onto the widget. We
call the static function QuUribrag: : decodeLocalFiles () to get a list of file names
dragged by the user and read in the first file in the list. (The second argument
is passed as a non-const reference.) Typically, users only drag one file at a
time, but it is possible for them to drag multiple files by dragging a selection.

Qwidget also provides dragMoveEvent() and dragLeaveEvent(), but for most
applications they don’t need to be reimplemented.

The second example illustrates how to initiate a drag and accept a drop. We
will create a QListBox subclass that supports drag and drop, and use it as a
component in the Project Chooser application shown in Figure 9.1.

e0eoe Choose Projects

Project A Praoject B

Sally Prudhomme Eugene O'Neill
Henryk Sienkiewicz Bjernstjerne Bjsrnson
Selma Lagerlaf Anatole France
Rabindranath Tagore
Carl Spitteler

O

&

Figure 9.1. The Project Chooser application

The Project Chooser application presents the user with two list boxes, populat-
ed with names. Each list box represents a project. The user can drag and drop
the names in the list boxes to move a person from one project to another.

The drag and drop code is all located in the QListBox subclass. Here’s the
class definition:

class ProjectView : public QListBox

{
Q_OBJECT

218 9. Drag and Drop

public:
ProjectView(QWidget *parent, const char *name = 0);

protected:
void contentsMousePressEvent (QMouseEvent *event);
void contentsMouseMoveEvent (QMouseEvent *event);
void contentsDragEnterEvent (QDragEnterEvent *event) ;
void contentsDropEvent (QDropEvent *event);

private:
void startDrag();

QPoint dragPos;
Vi

ProjectView reimplements four of the event handlers declared in 9Scrollview
(oListBox’s base class).

ProjectView::ProjectView(QWidget *parent, const char *name)
QListBox(parent, name)
{
viewport () ->setAcceptDrops (true) ;

}

In the constructor, we enable drops on the QScrollview viewport.

void ProjectView::contentsMousePressEvent (QMouseEvent *event)

{
if (event->button() == LeftButton)
dragPos = event->pos|();
QListBox::contentsMousePressEvent (event) ;

}

When the user presses the left mouse button, we store the mouse position in
the dragPos private variable. We call QListBox’s implementation of contents-
MousePressEvent () to ensure that QListBox has the opportunity to process
mouse press events as usual.

void ProjectView::contentsMouseMoveEvent (QMouseEvent *event)
{

if (event->state()

int distance =

if (distance >

startDrag() ;

& LeftButton) {
(event->pos () - dragPos).manhattanLength();
QApplication::startDragDistance()

}
QListBox::contentsMouseMoveEvent (event) ;

}

When the user moves the mouse cursor while holding the left mouse button,
we consider starting a drag. We compute the distance between the current
mouse position and the position where the left mouse button was pressed.

If the distance is larger than Qapplication’s recommended drag start distance
(normally 4 pixels), we call the private function startdrag() to start dragging.
This avoids initiating a drag just because the user’s hand shakes.

Enabling Drag and Drop 219

void ProjectView::startDrag()
{
QString person = currentText();
if (!person.isEmpty()) {
QTextDrag *drag = new QTextDrag(person, this);
drag->setSubtype ("x-person") ;
drag->setPixmap (QPixmap: : fromMimeSource ("person.png"));
drag->drag () ;

}

In startDrag(), we create an object of type QTextDrag with this as its parent.
The QrextDrag class represents a drag and drop object for transferring text.
It is one of several predefined types of drag objects that Qt provides; others
include QImageDrag, QColorDrag, and QUriDrag. We also set a pixmap to represent
the drag. The pixmap is a small icon that follows the cursor while the drag is
taking place.

We call setSubtype () to set the subtype of the object’s MIME type to x-person.
This causes the object’s full MIME type to be text/x-person. If we didn’t call
setSubtype (), the MIME type would be text/plain.

Standard MIME types are defined by the Internet Assigned Numbers Author-
ity (IANA). They consist of a type and a subtype separated by a slash. When
we create non-standard types, such as text/x-person, it is recommended that
an x- is prepended to the subtype. MIME types are used by the clipboard and
by the drag and drop system to identify different types of data.

The drag() call starts the dragging operation. After the call, the QTextDrag
object will remain in existence until the drag operation is finished. Qt takes
ownership of the drag object and will delete it when it is no longer required,
even if it is never dropped.

void ProjectView::contentsDragEnterEvent (QDragEnterEvent *event)
{
event->accept (event->provides ("text/x-person")) ;

}

The projectview widget not only originates drags of type text/x-person, it also
accepts such drags. When a drag enters the widget, we check whether it has
the correct MIME type and reject it if it hasn’t.

void ProjectView::contentsDropEvent (QDropEvent *event)
{
QString person;

if (QTextDrag::decode(event, person)) {
QWidget *fromWidget = event->source();
if (fromWidget && fromWidget != this
&& fromWidget->inherits("ProjectView")) {
ProjectView *fromProject = (ProjectView *)fromWidget;
QListBoxItem *item =
fromProject->findItem(person, ExactMatch);

delete item;

220 9. Drag and Drop

insertItem(person) ;

}

In contentsDropEvent (), we use the QTextDrag::decode() function to extract
the text carried by the drag. The QDropEvent::source() function returns a
pointer to the widget that initiated the drag, if that widget is part of the same
application. If the source widget is different from the target widget and is a
ProjectView, we remove the item from the source widget (by calling delete) and
insert a new item into the target.

Supporting Custom Drag Types

In the examples so far, we have relied on predefined Qt classes to hold the
drag data. For example, we used QuriDrag for a file drag and QTextDrag for a
text drag. Both of these classes inherit Qdragobject, the base class for all drag
objects. QDragObject itself inherits QMimeSource, an abstraction for providing
MIME-typed data.

If we want to drag text, images, URISs, or colors, we can use Qt’s QTextDrag,
QImageDrag, QUriDrag, and QColorDrag classes. But if we want to drag custom
data, none of these predefined classes is suitable, and so we must choose one
of two alternatives:

* We can store the drag as binary data in a QStoredDrag object.

¢ We can create our own drag class by subclassing Qdragobject and reimple-
menting a couple of virtual functions.

QStoredDrag allows us to store arbitrary binary data, so it can be used for any
MIME type. For example, if we want to initiate a drag with the contents of
a binary file that stores data in the (fictitious) ASDF format, we could use the
following code:

void MyWidget::startDrag()
{
QByteArray data = toAsdf();
if (!data.isEmpty()) {
QStoredDrag *drag = new QStoredDrag("octet-stream/x-asdf",
this);
drag->setEncodedData (data) ;
drag->setPixmap (QPixmap: : fromMimeSource ("asdf.png"));
drag->drag() ;

}

One inconvenience of QStoredDrag is that it can only store a single MIME type.
If we perform drag and drop within the same application or between multiple
instances of the same application, this is seldom a problem. But if we want to
interact nicely with other applications, one MIME type is rarely sufficient.

Supporting Custom Drag Types 221

Another inconvenience is that we need to convert our data structure to a
QByteArray even if the drag is not accepted in the end. If the data islarge, this
can slow down the application needlessly. It would be better to perform the
data conversion only when the user actually drops the drag object.

A solution to both of these problems is to subclass QbragObject and reimple-
ment format () and encodedData (), the two virtual functions used by Qt to ob-
tain information about a drag. To show how this works, we will develop a cel1-
Drag class that stores the contents of one or more cells in a rectangular QTable
selection.

class CellDrag : public QDragObject
{
public:
CellDrag(const QString &text, QWidget *parent = 0,
const char *name = 0);

const char *format(int index) const;
QByteArray encodedData(const char *format) const;

static bool canDecode(const QMimeSource *source);
static bool decode(const QMimeSource *source, QString &str);

private:
QString toCsv() const;
QString toHtml() const;

QString plainText;
i

The cellDrag class inherits Qdragobject. The two functions that really matter
for dragging are format () and encodedpata(). It is convenient, although not
strictly necessary, to provide canDecode() and decode() static functions to
extract the data on a drop.

CellDrag::CellDrag(const QString &text, QWidget *parent,
const char *name)
: QDragObject (parent, name)
{
plainText = text;

}

The cellDrag constructor accepts a string that represents the contents of the
cells that are being dragged. The string is in the “tabs and newlines” plain
text format that we used in Chapter 4 when we added clipboard support to the
Spreadsheet application (p. 80).

const char *CellDrag::format(int index) const
{
switch (index) {
case 0:
return "text/csv";
case 1:
return "text/html";
case 2:

222 9. Drag and Drop

return "text/plain";
default:
return 0;
}
}

The format () function is reimplemented from QMimeSource to return the differ-
ent MIME types supported by the drag. We support three types: comma-sepa-
rated values (CSV), HTML, and plain text.

When Qt needs to determine which MIME types are provided by the drag, it
calls format () with an index parameter of 0, 1,2, ..., up until format () returns
a null pointer. The MIME types for CSV and HTML were obtained from the
official list, available at http://www.iana.org/assignments/media-types/.

The precise order of the formats is usually irrelevant, but it’s good practice
to put the “best” formats first. Applications that support many formats will
sometimes use the first one that matches.

QByteArray CellDrag::encodedData(const char *format) const
{

QByteArray data;

QTextOStream out(data);

if (gstrcmp(format, "text/csv") == 0) {
out << toCsv();

} else if (gstrcmp(format, "text/html") == 0) {
out << toHtml();

} else if (gstrcmp(format, "text/plain") == 0) {

out << plainText;
}
return data;

}

The encodedbata () function returnsthe data for a given MIME type. The value
of the format parameter is normally one of the strings returned by format (),
but we can’t assume that, since not all applications check the MIME type
against format () beforehand. In Qt applications, this check is usually done
by calling provides () on a QDragEnterEvent or QDragMoveEvent, as we did earlier
(p. 219).

To convert a QString into a QByteArray, the best approach is to use a QText-
stream. If the string contains non-ASCII characters, QTextStream will assume
that the encoding is the local 8-bit encoding. (For most European countries,
this means ISO 8859-1 or ISO 8859-15; see Chapter 15 for details.) It can be
instructed to use other encodings by calling setEncoding() or setCodec () on the
stream, as explained in Chapter 15.

QString CellDrag::toCsv() const
{
QString out = plainText;
out.replace("\\", "\\\\");
out.replace(“\"", ||\\\||||);
Out.replace("\t", ||\||’ \uu);

Supporting Custom Drag Types 223

out.replace("\n", "\"\n\"");
out.prepend("\"");
out.append("\"");

return out;

}

QString CellDrag::toHtml () const

{
QString out = QStyleSheet::escape(plainText);
out.replace("\t", "<td>");
out.replace("\n", "\n<tr><td>");
out.prepend("<table>\n<tr><td>");
out.append("\n</table>");
return out;

}

The tocsv() and toHtml () functions convert a “tabs and newlines” string into
a CSV or an HTML string. For example, the data

Red Green Blue
Cyan Yellow Magenta

is converted to

n Red”, n Greel’l", ||Bluell
"Cyan", "Yellow", "Magenta"

or to

<table>
<tr><td>Red<td>Green<td>Blue
<tr><td>Cyan<td>Yellow<td>Magenta
</table>

The conversion is performed in the simplest way possible, using QString::
replace(). To escape HTML special characters, we use the QStyleSheet::
escape () static convenience function.

bool CellDrag::canDecode(const QMimeSource *source)
{
return source->provides("text/plain");

}

The canDecode () function returns true if we can decode the given drag, false
otherwise. For maximum flexibility, its argument is a QMimeSource. The QMime-
Source class is a base class of QDragObject, QDragEnterEvent, QDragMoveEvent,
and QDropEvent.

Although we provide the data in three different formats, we only accept plain
text. The reason for this is that plain text is normally sufficient. If the user
drags cells from a QTable to an HTML editor, we want the cells to be converted
into an HTML table. But if the user drags arbitrary HTML into a QTable, we
don’t want to accept it.

bool CellDrag::decode(const QMimeSource *source, QString &str)
{

QByteArray data = source->encodedData("text/plain");

224 9. Drag and Drop

str = QString::fromLocal8Bit((const char *)data, data.size());
return !str.isEmpty();

}

Finally, the decode() function converts the text/plain data into a QString.
Again, we assume the text is encoded using the local 8-bit encoding.

If we want to be certain of using the right encoding, we could use the charset
parameter of the text/plain MIME type to specify an explicit encoding. Here
are a few examples:

text/plain;charset=US-ASCII
text/plain;charset=I150-8859-1
text/plain;charset=Shift_JIS

When we use QTextDrag, it always exports UTF-8, UCS-2 (UTF-16), US-ASCII,
and the local 8-bit encoding, and accepts drops from other encodings as well.
Considering this, it might be smarter to implement Cel1Drag: : decode () simply
by calling QTextDrag::decode (). But even with this approach, it’s still a good
idea to provide a CellDrag::decode() separate from QTextDrag::decode(), in
case we want to extend it later to decode another type of drag (for example,
CSV drags) in addition to plain text.

Now we have our CellDrag class. To make it useful, we must integrate it with
QTable. It turns out that QTable already does almost all of the work for us.
All we need to do is to subclass it, call setDragEnabled(true) in our subclass’s
constructor, and reimplement QTable::dragObject() to return a CellDrag.
Here’s an example:

QDragObject *MyTable::dragObject()
{

return new CellDrag(selectionAsString(), this);

}

We have not shown the code for the selectionAsString(),becauseitisthe same
as the core of the Spreadsheet: :copy() function (p. 80).

Adding drop support to a QTable would require us to reimplement contents-
DragEnterEvent () and contentsDropEvent () in the same way as we did for the
Project Chooser application.

Advanced Clipboard Handling

Most applications make use of Qt’s built-in clipboard handling in one way or
another. For example, the QTextEdit class provides support for Ctrl+X, Ctrl+C,
and Ctrl+V, along with cut (), copy (), and paste() slots, so little or no additional
code is required.

When writing our own classes, we can access the clipboard through gappli-
cation::clipboard(), which returns a pointer to the application’s QClipboard
object. Handling the system clipboard is easy: Call setText (), setImage(), or
setPixmap() to put data on the clipboard, and text (), image(), or pixmap() to

Advanced Clipboard Handling 225

retrieve the data. We have already seen examples of clipboard use in the
Spreadsheet application from Chapter 4 and in the Diagram application from
Chapter 8.

For some applications, the built-in functionality might not be sufficient. For
example, we might want to provide data that isn’t just text or an image. Or
we might want to provide data in many different formats, for maximum
interoperability with other applications. The issue is very similar to what we
encountered earlier with drag and drop, and the answer is also similar: We
must subclass QMimeSource and reimplement format () and encodedpata().

If our application supports drag and drop, we can simply reuse our custom
QbragObject subclass and put it on the clipboard using the setdata () function.
Since QbragObject inherits QMimeSource and the clipboard understand QMime-
Sources, this works seamlessly.

For example, here’s how we could implement the copy() function of a Qrable
subclass:

void MyTable::copy()
{

QApplication::clipboard()->setData(dragObject());
}

At the end of the previous section, we implemented dragObject () to return a
CellDrag that stores the selected cells’ contents.

To retrieve the data, we can call data() on the clipboard. Here’s how we could
implement the paste() function of a QTable subclass:

void MyTable::paste()
{
QMimeSource *source = QApplication::clipboard()->data();
if (CellDrag::canDecode(source)) {
QString str;
CellDrag::decode(source, str);
performPaste(str);

}

The performPaste() is essentially the same as the Spreadsheet::paste()
function presented in Chapter 4 (p. 81).

This is all that is required, along with a custom QMimeSource, to add clipboard
support for a custom type.

The X11 clipboard provides additional functionality not available on Win-
dows or Mac OS X. On X11, it is usually possible to paste a selection by click-
ing the middle button of a three-button mouse. This is done using a separate
“selection” clipboard. If you want your widgets to support this kind of clip-
board as well as the standard one, you must pass QClipboard: :Selection as an
additional argument to the various clipboard calls. For example, here’s how
we would reimplement mouseReleaseEvent () in a text editor to support pasting
using the middle mouse button:

226 9. Drag and Drop

void MyTextEditor::mouseReleaseEvent (QMouseEvent *event)
{
QClipboard *clipboard = QApplication::clipboard();
if (event->button() == MidButton
&& clipboard->supportsSelection()) {
QString text = clipboard->text(QClipboard::Selection);
pasteText (text) ;

}

On X11, the supportsSelection() function returns true. On other platforms, it
returns false.

Reading and Writing Binary
Data

Reading and Writing Text

* Handling Files and
Directories

Inter-Process Communication

Input/Output

This chapter covers reading and writing files, traversing the file system, and
interacting with external programs.

Qt’s QDataStream and QTextStream classes make it simple to read and write files.
These classes take care of issues such as byte ordering and text encodings,
ensuring that Qt applications running on different platforms can read and
write each other’s files.

Many applications need to traverse directories or get information about a file.
Qt’s QDir and QFileInfo classes makes this possible.

In some situations, it is necessary to run external programs from within a
GUI program. Qt’s gprocess class allows us to execute external programs
asynchronously, keeping the GUI responsive, with signals to tell us how the
execution is progressing.

Reading and Writing Binary Data

Reading and writing binary data using QDataStream is the simplest way to
load and save custom data with Qt. QDataStream supports many Qt data types,
including QByteArray, QFont, QTmage, QMap<K, T>, QPixmap, QString, QValueList<T>,
and qvariant. The data types that QpataStream understands and the formats
it uses to store them are described online at http://doc.trolltech.com/3.2/
datastreamformat.html.

To show how to handle binary data, we will use two example classes: Drawing
and Gallery. The Drawing class holds some basic information about a drawing
(the artist’s name, the title, and the year it was created), and the callery class
holds a list of Drawings.

We will start with the callery class.

227

228 10. Input/Output

class Gallery : public QObject

{

public:
bool loadBinary(const QString &fileName);
bool saveBinary(const QString &fileName);

private:
enum { MagicNumber = 0x98c58f26 };

volid writeToStream(QDataStream &out);

void readFromStream(QDataStream &in);

void error(const QFile &file, const QString &message);
void ioError(const QFile &file, const QString &message);

QByteArray getData();
void setData(const QByteArray &data);
QString toString();

std::list<Drawing> drawings;

Vi

The Gallery class contains public functions to save and load its data. The data
is a list of drawings held in the drawings data member. The private functions
will be reviewed as we make use of them.

Here is a simple function for saving a callery’s drawings as binary data:

bool Gallery::saveBinary(const QString &fileName)
{
QFile file(fileName);
if (!file.open(IO_WriteOnly)) {
ioError(file, tr("Cannot open file %1 for writing"));
return false;

}

QDataStream out(&file);
out.setVersion(5);

out << (Q_UINT32)MagicNumber;
writeToStream(out) ;

if (file.status() != IO_Ok) {
ioError(file, tr("Error writing to file %1"));
return false;

}

return true;

}

We open a file and make the file the target of a Qpatastream. We set the gpata-
Stream’s version to 5 (the most recent version in Qt 3.2). The version number
influences the way Qt data types are represented. Basic C++ data types are
always represented the same way.

We then output a number that identifies the Gallery file format (MagicNumber).
To ensure that the number is written as a 32-bit integer on all platforms, we
cast it to Q_UINT32, a data type that is guaranteed to be exactly 32 bits.

Reading and Writing Binary Data 229

The file body is written by the writeToStream() private function. We don’t need
to explicitly close the file; this is done automatically when the Qrile variable
goes out of scope at the end of the function.

After the call to writeToStream(), we check the status of the grile device. If
there was an error, we call ioError () to present a message box to the user and
return false.

void Gallery::ioError(const QFile &file, const QString &message)
{
error(file, message + ": " + file.errorString());

}

The ioError() function relies on the more general error () function:

void Gallery::error(const QFile &file, const QString &message)
{

QMessageBox::warning (0, tr("Gallery"), message.arg(file.name()));
}

Now let’s review the writeToStream() function:

void Gallery::writeToStream(QDataStream &out)
{

list<Drawing>::const_iterator it = drawings.begin();

while (it != drawings.end()) {
out << *it;
t+it;

}

The writeToStream() function iterates over all of the Gallery’s drawings and
outputs them to the stream it has been given, relying on the Drawing class’s <<
operator. If we had used a QvalueList<Drawing> to store the drawings instead
of a 1ist<Drawing>, we could have omitted the loop and simply written

out << drawings;

When a QvalueList<T> is streamed, each item stored in the list is output using
the item type’s << operator.

QDataStream &operator<<(QDataStream &out, const Drawing &drawing)
{
out << drawing.myTitle << drawing.myArtist << drawing.myYear;
return out;

}

To output a Drawing, we simply output its three private member variables: my-
Title, myArtist, and myYear. We need to declare operator<<() as a friend of
Drawing for this to work. At the end of the function, we return the stream. This
is a common C++ idiom that allows us to use a chain of << operators with an
output stream. For example:

out << drawingl << drawing2 << drawing3;

The definition of the Drawing class follows.

230

10. Input/Output

class Drawing

{

friend QDataStream &operator<<(QDataStream &, const Drawing &);
friend QDataStream &operator>>(QDataStream &, Drawing &);

public:

Drawing () { myYear = 0; }
Drawing(const QString &title, const QString &artist, int year)
{ myTitle = title; myArtist = artist; myYear = year; }

QString title() const { return myTitle; }

void setTitle(const QString &title) { myTitle = title; }
QString artist() const { return myArtist; }

void setArtist(const QString &artist) { myArtist = artist; }
int year() const { return myYear; }

void setYear(int year) { myYear = year; }

private:

Vi

QString myTitle;
QString myArtist;
int myYear;

Now let’s see how to read the data from a Gallery file:

bool Gallery::loadBinary(const QString &fileName)

{

}

QFile file(fileName);

if (!file.open(IO_ReadOnly)) {
ioError(file, tr("Cannot open file %1 for reading"));
return false;

}

QDataStream in(&file);
in.setVersion(5);

Q_UINT32 magic;

in >> magic;

if (magic != MagicNumber) {
error(file, tr("File %1 is not a Gallery file"));
return false;

}
readFromStream(in) ;

if (file.status() !'= IO0_O0k) {
ioError(file, tr("Error reading from file %1"));
return false;

}

return true;

We open the file for reading and create a QpataStream to extract the data from
the file. We set the QpataStrean’s version to 5, because that’s the version we
used for writing. By using a fixed version number of 5, we guarantee that the
application can always read and write the data, providing it is compiled with
Qt 3.2 or later.

Reading and Writing Binary Data 231

We start by reading back the magic number we wrote and compare it against
MagicNumber. This ensures that we are really reading a Gallery file. We then
read the data itself using the readFromstream() function.

void Gallery::readFromStream(QDataStream &in)
{
drawings.clear();
while (!in.atEnd()) {
Drawing drawing;
in >> drawing;
drawings.push_back (drawing) ;

}

In readFromStream(), we start by clearing any existing data. We then read
in one drawing at a time, relying on the >> operator, and append each one
to the callery’s list of drawings. If we were using a QValuelList<Drawing> to
store the data instead of a 1ist<Drawing>, we could read in all the drawings
without looping:

in >> drawings;
QValueList<T> relies on the item type’s >> operator to read in the items.

QDataStream &operator>>(QDataStream &in, Drawing &drawing)

{
in >> drawing.myTitle >> drawing.myArtist >> drawing.myYear;
return in;

}

The implementation of the >> operator mirrors that of the << operator. When
we use QDataStream, we don’t need to perform any kind of parsing.

If we want to read and write some raw binary data, we can use readRawBytes ()
and writeRawBytes () to read and write a block of bytes through a QpataStream.
The raw bytes are not preceded by a block size.

We can read and write standard binary formats, such as DBF files and TgX
DVI files, using the >> and << operators on basic types (like Q_UINT16 or float)
or with readrawBytes () and writeRawBytes (). The default byte ordering used by
QDataStream is big-endian. If we want to read and write data as little-endian,
we must call

stream.setByteOrder (QDataStream::LittleEndian) ;

If the gQpatastreamis being used purely to read and write basic C++ data types,
there is no need to use setversion().

If we want to read or write a file in one go, we can avoid using QDataStream
altogether and instead use QFile’s writeBlock() and readall() functions. For
example:

file.writeBlock(getData());

232 10. Input/Output

Data written in this way is just a sequence of bytes. We are responsible for
structuring the data when we write it and for parsing it when we read it back.
We rely on Gallery’s private getData() function to create the QByteArray and
populate it with data. Reading it back is just as easy:

setData(file.readall());

We use Gallerys setData() function to extract the information out of the
QByteArray

Having all the data in a QByteArray requires more memory, but it offers some
advantages. For example, we can then use Qt’s gCompress() function to
compress the data (using zlib):

file.writeBlock(gCompress(getDatal()));
We can then use qUncompress () to uncompress the data:
setData(gUncompress (file.readAll()));

One way to implement getData() and setData() is to use a QDataStream on a
QByteArray. Here’s getData()

QOByteArray Gallery::getDataf()
{
QByteArray data;
QDataStream out(data, IO_WriteOnly);
writeToStream(out) ;
return data;

}

We create a QDataStream that writes to a QByteArray rather than to a QFile,
and we use the writeToStream() function we wrote earlier to fill the array with
binary data.

Similarly, the setData() function can use the readFromStream() function we
wrote earlier:

void Gallery::setData(const QByteArray &data)

{
QDataStream in(data, IO_ReadOnly);
readFromStream(in) ;

}

In the earlier examples, we loaded and saved the data with the stream’s
version hard-coded to 5. This approach is simple and safe, but it does have one
small drawback: We cannot take advantage of new or updated formats. For
example, if a later version of Qt added a new component to gFont (in addition
to its point size, family, etc.), that component would not be saved or loaded.

One solution is to embed the QbataStream version number in the file:

QDataStream out(&file);

out << (Q_UINT32)MagicNumber;
out << (Q_UINT16)out.version();
writeToStream(out) ;

Reading and Writing Binary Data 233

This ensures that we always write the data using the most recent version of
QDataStream, whatever that happens to be.

When we come to read the file, we read the magic number and the stream
version:

QDataStream in(&file);

Q_UINT32 magic;
Q_UINT16 streamVersion;
in >> magic >> streamVersion;

if (magic != MagicNumber) {
error(file, tr("File %1 is not a Gallery file"));
return false;
} else if ((int)streamVersion > in.version()) {
error(file, tr("File %1 is from a more recent version of the "
"application"));
return false;

}

in.setVersion(streamVersion) ;
readFromStream(in) ;

We can read the data as long as the stream version is less than or equal to the
version used by the application. Otherwise, we report an error.

If the file format contains a version number of its own, we can use that instead
of the stream version number. For example, let’s suppose that the file format
is for version 1.3 of our application. We might then write the data as follows:

QDataStream out(&file);
out.setVersion(5);

out << (Q_UINT32)MagicNumber;
out << (Q_UINT16)0x0103;
writeToStream(out) ;

When we read it back, we determine which QbataStream version to use based
on the application’s version number:

QDataStream in(&file);

Q UINT32 magic;
UINT16 appVersion;
in >> magic >> appVersion;

if (magic != MagicNumber) {
error(file, tr("File %1 is not a Gallery file"));
return false;
} else if (appVersion > 0x0103) {
error(file, tr("File %1 is from a more recent version of the "
"application"));
return false;

}

if (appVersion <= 0x0102) {
in.setVersion(4);

234 10. Input/Output

} else {
in.setVersion(5);
}

readFromStream(in) ;

In this example, we say that any file saved with version 1.2 or earlier of the
application uses data stream version 4, and that files saved with version 1.3
of the application use data stream version 5.

Once we have a policy for handling gpataStream versions, reading and writing
binary data using Qt is simple and reliable.

Reading and Writing Text

Qt provides the Qrextstream class for reading and writing textual data. We
can use QTextStream for reading and writing plain text files or files of other
textual file formats, such as HTML, XML, and source files. It takes care
of converting between Unicode and the system’s local 8-bit encoding, and
transparently handles the different line-ending conventions used by different
operating systems.

QTextStream uses QChar as its fundamental unit of data. In addition to char-
acters and strings, QTextStream supports C++s basic numeric types, which it
converts to and from strings.

To show how to use QTextStream, we will continue with the callery example
from the previous section. Here’s the code for a saveText () function that saves
the drawings data from a Gallery:

bool Gallery::saveText(const QString &fileName)
{
QFile file(fileName);
if (!file.open(IO_WriteOnly | IO_Translate)) {
ioError(file, tr("Cannot open file %1 for writing"));
return false;

}

QTextStream out (&file);
out.setEncoding (QTextStream: : UnicodeUTF8) ;

list<Drawing>::const_iterator it = drawings.begin();

while (it != drawings.end()) {
out << *it;
++it;

}

if (file.status() !'= IO0_O0k) {

ioError(file, tr("Error writing to file %1"));
return false;

}

return true;

}

We open the file with the 10_Translate flag to translate newline characters
to the correct sequence for the target platform (“\r\n” on Windows, “\r” on

Reading and Writing Text 235

Mac OS X). Then we set the encoding to UTF-8, an ASCII-compatible encoding
that can represent the entire Unicode character set. (For more information
about Unicode, see Chapter 15.) To handle the output, we iterate over each
drawing in the callery relying on the << operator:

QTextStream &operator<<(QTextStream &out, const Drawing &drawing)
{
out << drawing.myTitle << ":" << drawing.myArtist << ":"
<< drawing.myYear << endl;
return out;

}

When writing out a drawing, we use a colon to separate the drawing’s title
from the artist’s name and another colon to separate the artist’s name from
the year, and we end the data with a newline. We assume that the title and
the artist’s name don’t contain colons or newlines.

Here’s an example file output by saveText ():

The False Shepherds:Hans Bol:1576

Panoramic Landscape:Jan Brueghel the Younger:1619
Dune Landscape:Jan van Goyen:1630

River Delta:Jan van Goyen:1653

Now let’s look at how we can read the data from the file:

bool Gallery::loadText(const QString &fileName)
{
QFile file(fileName);
if (!file.open(IO_ReadOnly | IO_Translate)) {
ioError(file, tr("Cannot open file %1 for reading"));
return false;

}

drawings.clear();
QTextStream in(&file);
in.setEncoding (QTextStream: : UnicodeUTF8) ;

while (!in.atEnd()) {
Drawing drawing;
in >> drawing;
drawings.push_back(drawing) ;

}

if (file.status() != IO_Ok) {
ioError(file, tr("Error reading from file %1"));
return false;

}

return true;

}

The interesting part is the while loop. Aslong as there is more data available,
we read it in using the >> operator.

Implementing the >> operator isn’t trivial, because textual data is fundamen-
tally ambiguous. Let’s consider the following example:

236 10. Input/Output

out << "alpha" << "bravo";

If out is a QTextStream, the data that actually gets written is the string
“alphabravo”. We can’t really expect this to work with a QTextStream:

in >> strl >> str2;

In fact, what happens then is that str1 gets the whole word “alphabravo”, and
str2 gets nothing. QDataStream doesn’t have that problem because it stores the
length of each string in front of the character data.

If the text we write out consists of single words, we can put spaces between
them and read the data back word by word. (The Diagramview::copy() and
DiagramView: :paste() functions of Chapter 8 use this approach.) We can’t do
this for the drawings because artist names and drawing titles usually contain
more than one word. So we read each line in as a whole and then split it into
fields using QStringList::split():

QTextStream &operator>>(QTextStream &in, Drawing &drawing)
{
QString str = in.readLine();
QStringList fields = QStringList::split(":", str);
if (fields.size() == 3) {
drawing.myTitle = fields[0];
drawing.myArtist = fields[1];
drawing.myYear = fields[2].toInt();
}
return in;

}

We can read entire text files in one go using QTextStream: : read():
QString wholeFile = in.read();

In the resulting string, the end of each line is signified with a newline charac-
ter (An’) regardless of the line-ending convention used by the file being read.

Reading in an entire text file can be very convenient if we need to preprocess
the data. For example:

wholeFile.replace("&", "&");
wholeFile.replace("<", "<");
wholeFile.replace(">", ">");

For writing in one go, we could put all our data into a single string and simply
output that.

QString Gallery::saveToString()
{
QString result;
QTextOStream out (&result);
list<Drawing>::const_iterator it = drawings.begin();
while (it != drawings.end()) {
out << *it;
++it;

Reading and Writing Text 237

return result;

}

It is just as easy to stream text into a string as it is to stream it to a file, again
relying on the << operator.

void Gallery::readFromString(const QString &data)
{
QString string = data;
drawings.clear();
QTextIStream in(&string);
while (!in.atEnd()) {
Drawing drawing;
in >> drawing;
drawings.push_back(drawing) ;

}

Extracting the data from a string using a QTextStream is straightforward. No
parsing is necessary because we rely on the >> operator.

Writing text data isn’t difficult, but reading text can be challenging. For
complex formats, a full-blown parser might be required. Such a parser would
typically work by reading the data character by character using >> on a Qchar,
or line by line using readLine() and iterating through the returned QString.

Handling Files and Directories

Qt’s Qpir class provides a platform-independent means of traversing directo-
ries and retrieving information about files. To see how gpnir is used, we will
write a small console application that calculates the space consumed by all the
images in a particular directory and all its subdirectories to any depth.

The heart of the application is the imageSpace() function, which computes the
size of a given directory:

int imageSpace(const QString &path)
{
QDir dir(path);
QStringList::Iterator it;
int size = 0;

QStringList files = dir.entryList("*.png *.jpg *.jpeg",

QDir::Files);
it = files.begin();
while (it != files.end()) {
size += QFilelInfo(path, *it).size();
++it;

}

QStringList dirs = dir.entryList(QDir::Dirs);
it = dirs.begin();
while (it != dirs.end()) {
if (*it 1= m.omog& *it 1= M)
size += imageSpace(path + "/" + *it);

238 10. Input/Output

++it;
}
return size;

}

We begin by creating a QDir object using the given path. We pass the entry-
List() function two arguments. The first is a space-separated list of file name
filters. These can contain ‘¥ and ‘”’ wildcard characters. In thisexample, we are
filtering to include only PNG and JPEG files. The second argument specifies
what kind of entries we want (normal files, directories, drives, etc.).

We iterate over the list of files, accumulating their sizes. The QFileInfo class
allows us to access a file’s attributes, such as its size, permissions, owner,
and timestamps.

The second entryList () call retrieves all the subdirectories in this directory.
We iterate over them and recursively call imageSpace() to ascertain their
accumulated image sizes.

To create each subdirectory’s path, we combine the current directory’s path
with the subdirectory name (*it), separating them with a slash. gpir treats
as a directory separator on all platforms, in addition to ‘\’ on Windows. When
presenting paths to the user, we can call the static function QDir: : convertSep-
arators() to convert slashes to the correct platform-specific separator.

Let’s add a main () function to our small program:

int main(int argc, char *argv[])
{
QString path = QDir::currentDirPath();
if (arge > 1)
path = argvI[1];

cerr << "Space used by images in " << endl
<< path.ascii() << endl
<< "and its subdirectories is "
<< (imageSpace(path) / 1024) << " KB" << endl;

return 0;

}

For this example, we don’t need a QApplication object, because we are only
using Qt’s tool classes. See http://doc.trolltech.com/3.2/tools.html for the
list of these classes.

We use QDir::currentDirPath() to initialize the path to the current directory.
Alternatively, we could have used QDir::homeDirPath() to initialize it to the
user’s home directory. If the user has specified a path on the command line,
we use that instead. Finally, we call our imageSpace () function to calculate how
much space is consumed by images.

The gpnir class provides other file- and directory-related functions, including
rename (), exists (), mkdir (), and rmdir (). The QFile class provides some static
convenience functions, including remove () and exists().

Inter-Process Communication 239

Inter-Process Communication

The QProcess class allows us to execute and interact with external programs.
The class works asynchronously, doing its work in the background so that the
user interface remains responsive. QProcess emits signals to notify us when
the external process has data or has finished.

We will develop a small application that provides a user interface for an ex-
ternal image conversion program. For this example, we make use of the Im-
ageMagick convert program, which is freely available for all major platforms.

exte (2][=][Of[x]

Source File: |m::|mernick.limages.froad4.png
Target Format: EMF -
— Options

¥ Enhance [~ Mornochrome

File Momemickimagesiroadd brp created

LConvert Quit
11 Il

Figure 10.1. The Image Converter application

The Image Converter’s user interface was created in Q¢ Designer. The .ui file
is on the CD that accompanies this book. Here, we will focus on the .ui.h file
that contains the code. Note that the process and fileFilters variables were
declared in Q¢ Designer’s Members tab as follows:

QProcess *process;
QString fileFilters;

The uic tool includes these variables as part of the generated Convertdia-
log class.

void ConvertDialog::init()
{
process = 0;
QStringList imageFormats = QImage::outputFormatList();
targetFormatComboBox->insertStringList (imageFormats) ;
fileFilters = tr("Images") + " (*.,"
+ imageFormats.join(" *.").lower() + ")";

}

A file filter consists of a descriptive text and one or more wildcard patterns (for
example, “Text files (+.txt)”). The QImage: : outputFormatList () function returns

240

10. Input/Output

a list of the image output formats that are supported by Qt. This list can vary
depending on the options that were selected when Qt was installed.

void ConvertDialog::browse()

{

}

QString initialName = sourceFileEdit->text();
if (initialName.isEmpty())
initialName = QDir::homeDirPath();
QString fileName =
QFileDialog::getOpenFileName(initialName, fileFilters,
this);
fileName = QDir::convertSeparators(fileName);
if (!fileName.isEmpty()) {
sourceFileEdit->setText (fileName) ;
convertButton->setEnabled(true);

The dialog’s Browse button is connected to the browse() slot. If the user has
previously selected a file, we initialize the file dialog with that file’s path;
otherwise, we use the user’s home directory.

void ConvertDialog::convert()

{

}

QString sourceFile = sourceFileEdit->text();

targetFile = QFileInfo(sourceFile).dirPath() + QDir::separator()
+ QFileInfo(sourceFile) .baseName() ;

targetFile += ".";

targetFile += targetFormatComboBox->currentText () .lower();

convertButton->setEnabled(false);

outputTextEdit->clear();

process = new QProcess(this);
process—->addArgument ("convert") ;
if (enhanceCheckBox->isChecked())
process->addArgument ("-enhance") ;
if (monochromeCheckBox->isChecked())
process->addArgument ("-monochrome") ;
process—>addArgument (sourceFile) ;
process—->addArgument (targetFile) ;
connect (process, SIGNAL(readyReadStderr()
this, SLOT(updateOutputTextEdit ()
connect (process, SIGNAL(processExited()),
this, SLOT(processExited()));
process->start();

)I
))i

The dialog’s Convert button is connected to the convert() slot. We copy the
source file’s name and change its suffix to match the target file format.

We then create a QProcess object. The first argument given to a QProcess
object using addArgument () is the name of the external program to execute.
Subsequent arguments become this program’s arguments.

We connect the QProcess’s readyReadStderr() to the dialog’s updateOutputText-
Edit() slot to display error messages from the external program in the dialog’s

Inter-Process Communication 241

QrextEdit as they are generated. We also connect the QProcess’s processExit-
ed() signal to the dialog’s slot of the same name.

void ConvertDialog::updateOutputTextEdit ()

{
QByteArray data = process->readStderr();
QString text = outputTextEdit->text() + QString(data);
outputTextEdit->setText (text);

}

Whenever the external process writes to stderr, our updateOutputTextEdit ()
slot is called. We read the error text and append it to the QTextEdit.

void ConvertDialog::processExited()
{
if (process->normalExit()) {
outputTextEdit->append(tr("File %1 created")
.arg(targetFile));
} else {
outputTextEdit->append(tr("Conversion failed"));
}
delete process;
process = 0;
convertButton->setEnabled(true) ;
}

When the process has finished, we let the user know the outcome and then
delete the process.

Wrapping a console application in this way can be useful because it allows
us to make use of preexisting functionality rather than having to implement
that functionality ourselves. Another use of QpProcess is to launch other GUI
applications, such as a web browser or an email client.

Vectors
e Lists
Maps

Pointer-Based Containers
QString and QVariant

Container Classes

Container classes are general purpose template classes that store items of
a given type in memory. Standard C++ already includes many containers as
part of the Standard Template Library (STL).

Qt provides its own container classes, so when we write Qt programs, we can
use both the Qt and the STL containers. If you are already familiar with the
STL containers and have STL available on your target platforms, there’s no
particular reason to use the Qt containers.

In this chapter, we review the most important STL and Qt containers. We also
look at Qstring and Qvariant, two classes that have many things in common
with containers and that can be used as alternatives to containers in some
contexts.

For more information about the STL classes and functions, a good place to
start is SGI’s STL web site: http://www.sgi.com/tech/stl/.

Vectors

The STL and Qt classes for vectors, lists, and maps are template classes pa-
rameterized by the types of the objects we want to store in them. The values
that can be stored in these classes can be basic types (like int and double),
pointers, or classes that have a default constructor (a constructor that takes or
needs no arguments), a copy constructor,and an assignment operator. Classes
that qualify include QDateTime, QRegExp, QString, and Qvariant. Qt classes that
inherit from Qobject don’t qualify, because they don’t implement a copy con-
structor and an assignment operator. This isn’t usually a problem, since we
can still store pointers to these types.

In this section, we will review the most common operations for vectors, and in
the next two sections, we will review lists and maps. For most of the examples,

243

244 11. Container Classes

we will use the Film class, which stores the title and duration of a film. (We
will not call the class Movie because that looks too similar to Qt’s QMovie class,
which is used to show animated images.)

Here’s the definition of Film:

class Film
{
public:
Film(int id = 0, const QString &title = "", int duration = 0);

int id() const { return myId; }

void setId(int catalogId) { myId = catalogId; }

QString title() const { return myTitle; }

void setTitle(const QString &title) { myTitle = title; }
int duration() const { return myDuration; }

void setDuration(int minutes) { myDuration = minutes; }

private:
int myId;
QString myTitle;
int myDuration;

}i

int operator==(const Film &filml, const Film &film2);
int operator<(const Film &filml, const Film &film2);

We don’t explicitly provide a copy constructor or an assignment operator be-
cause the ones automatically supplied by C++ suffice here. If the class had in-
cluded pointers to memory allocated by the class, we would have to implement
them ourselves.

In addition to the class, we provide an equality operator and a “less than” oper-
ator. The equality operator is used when we search a container to see if it con-
tains a particular item. The “less than” operator is used for comparing items
when sorting them. We don’t need to implement the four other comparison
operators (! =, <=, >, >=) since STL never uses them.
Here’s the implementation of the three non-inline functions:

Film::Film(int id, const QString &title, int duration)

{

myId = id;

myTitle = title;
myDuration = duration;

int operator==(const Film &filml, const Film &film2)

return filml.id() == film2.1id();

int operator<(const Film &filml, const Film &film2)

return filml.id() < film2.id();

Vectors 245

When comparing Film objects, we use IDs rather than titles because titles are
not necessarily unique.

Film(4812,"A Hard Day’s Night", 85) films[0]

Film(5051, "Seven Days to Noon", 94) films[1]

Film(1301, "Day of Wrath", 105) films[2]
Film(9227,"A Special Day", 110) films[3]
Film(1817,"Day for Night", 116) films[4]

Figure 11.1. A vector of Films

A vector is a data structure that stores its items at adjacent positions in
memory. What distinguishes a vector from a plain C++ array is that a vector
knows its own size and can be resized. Appending extra elements to the end of
a vector is fairly efficient, but inserting elements at the front or in the middle
of a vector is expensive.

The STL’s vector class is called std::vector<T> and is defined in <vector>.
Here’s an example:

vector<Film> films;
The Qt equivalent is called Qvaluevector<T>:
QValueVector<Film> films;

A vector created like this has size 0. If we know in advance how many
elements we are going to need, we can give the vector an initial size when we
define it and use the [] operator to assign a value to its elements; otherwise,
we must either resize it later or append items.

A convenient way to populate a vector is to use push_back(). This function
appends an element at the end, extending the vector by one:

films.push_back(Film(4812, "A Hard Day’'s Night", 85))
films.push_back(Film(5051, "Seven Days to Noon", 94))
films.push_back(Film(1301, "Day of Wrath", 105));

films.push_back(Film(9227, "A Special Day", 110));
films.push_back(Film(1817, "Day for Night", 116))

’

In general, Qt offers the same function names as the STL, although in some
cases Qt has additional more Qt-like names. For example, if we are using the
Qt classes, we can append items using either push_back() or append ().

Another way to populate a vector is to give the vector an initial size and to
initialize the elements individually:

vector<Film> films(5);

246 11. Container Classes

films[0] = Film(4812, "A Hard Day’s Night", 85);
films([1] = Film(5051, "Seven Days to Noon", 94);
films([2] = Film(1301, "Day of Wrath", 105);
films([3] = Film(9227, "A Special Day", 110);
films([4] = Film(1817, "Day for Night", 116);

Vector entries that are created without being assigned an explicit value are
initialized using the item class’s default constructor. For basic and pointer
types, the value is undefined, just as it is when we define variables of these
types on the stack.

We can iterate over the vector’s elements using the [] operator:

for (int 1 = 0; i < (int)films.size(); ++i)
cerr << films[i].title().ascii() << endl;

Alternatively, we can use an iterator:

vector<Film>::const_iterator it = films.begin();

while (it != films.end()) {
cerr << (*it).title().ascii() << endl;
++it;

}

Every container class has two iterator types: iterator and const_iterator. The
difference between the two is that const_iterator doesn’t allow us to modify
the data.

A container’s begin() function returns an iterator that refers to the first item
in the container (for example, films[0]). A container’s end () function returns
an iterator that refers to the “one past the last” item (for example, films[5]).
If a container is empty, begin() equals end(). This can be used to see if the
container has any elements, although it is more convenient to call empty () for
this purpose.

Iterators have an intuitive syntax that resembles the syntax of C++ pointers.
We can use the ++ and -- operators to move to the next or previous item, and
unary * to retrieve the item stored at the current iterator position. In fact, for
vector<T>, the iterator and const_iterator types are merely typedefs for T *
and const T *.

If we want to find an item in a vector using a linear search, we can use the STL
find() function:

vector<Film>::iterator it = find(films.begin(), films.end(),
Film(4812));
if (it !'= films.end()
films.erase(it);

The find() function returns an iterator to the first item that compared equal
(using operator==()) to the item passed as the last argument. It is defined
in <algorithm>, along with many other template functions. These functions
typically operate on iterators. Qt provides a few of these functions under
different names (for example, gFind ()). You can use them if you want to use Qt
without the STL.

Vectors 247

To sort the items in a vector, we can call sort ():
sort(films.begin(), films.end());

The sort () function uses the < operator to compare items, unless we pass a
different comparison function.

Once sorted, we can use the binary_search() function to see if an item is
present. On a sorted vector, binary_search() gives the same result as find ()
(assuming no two films have the same ID), but is much faster:

int id = 1817;
if (binary_search(films.begin(), films.end(), Film(id)))
cerr << "Found " << id << endl;

Given a position indicated by an iterator, we can expensively insert a new item
using insert() or remove an existing item using erase():

films.erase(it);

The items that follow the erased item in the vector are then moved one
position to the left to fill its position, and the vector’s size is reduced by one.

Lists

A list (or linked list) is a data structure that stores its items at non-adjacent
locations in memory. Unlike vectors, lists have very poor random access per-
formance; on the other hand, insert () and erase() are very fast.

Many algorithms that work on vectors don’t work on lists, notably sort () and
binary_search(). This is because lists don’t provide fast random access. For
sorting an STL list, we can use its sort () member function.

Film(4812,"A Hard Day’s Night", 85) films.begin()

v

Film(5051, "Seven Days to Noon", 94)

v

Film(1301, "Day of Wrath", 105)

v

Film(9227,"A Special Day", 110)

v

Film(1817, "Day for Night", 116)

films.end()
Figure 11.2. Alist of Films

The STLU’s list class is called std::1ist<T> and is defined in <list>. Here’s
an example:

248 11. Container Classes

list<Film> films;
The Qt equivalent is called gvalueList<T>:
QValueList<Film> films;
The Film class was presented in the previous section (p. 244).

New items can be added using push_back() or with insert (). Unlike vectors,
inserting at the beginning or in the middle of a list is not expensive.

STL lists do not provide the [] operator, so iterators must be used to traverse
their elements. (Qt lists support the [] operator, but it can be very slow on
large lists.) The syntax and usage is exactly the same as for vectors, except
that we write 1ist<T> instead of vector<T> in front of the iterator type. For
example:

list<Film>::const_iterator it = films.begin();

while (it != films.end()) {
cerr << (*it).title().ascii() << endl;
++it;

}

Otherwise, lists mostly provide the same functions as vectors, including
empty(), size(), erase(), and clear(). The find() algorithm can also be used
on lists.

A few Qt functions return a QvalueList<T>. If we want to iterate over the
return value of a function, we must take a copy of the list and iterate over
the copy. For example, the following code is the correct way to iterate over the
QValueList<int> returned by QSplitter::sizes():

QValueList<int> list = splitter->sizes();
QValueList<int>::const_iterator it = list.begin();
while (it != list.end()) f{

do_something(*it);

++it;

}

The following code is wrong:

// WRONG
QValueList<int>::const_iterator it = splitter->sizes().begin();
while (it != splitter->sizes().end()) {

do_something(*it);

++it;

}

This is because QSplitter::sizes() returns a new QvalueList<int> by value
every time it is called. If we don’t store the return value, C++ automatically
destroys it before we have even started iterating, leaving us with a dangling
iterator. To make matters worse, each time the loop isrun, QSplitter::sizes()
must generate a new copy of the list because of the splitter->sizes().end()
call. In summary: Always iterate on a copy of a container returned by value.

Lists 249

Copying a container like this sounds expensive, but it isn’t, because Qt uses
an optimization called implicit sharing. This optimization means that we can
program as if the data has been copied, even though behind the scenes no data
copying has taken place.

The gstringList class, which is used in many places in Qt, is a subclass of
QValueList<QString>.In addition to the functionsit inherits from its base class,
it provides some extra functions that make the class more powerful. These
functions will be discussed in the last section of this chapter.

Maps

A map holds an arbitrary number of items of the same type, indexed by a key.
Maps store one unique value per key. Maps have good random access and
insertion performance. If a new value is assigned to an existing key, the old
value is replaced by the new value.

1301 | Film("Day of Wrath", 105) films [1301]
1817 —» Film("Day for Night", 116) films[1817]
4812 —»| Film("A Hard Day’s Night", 85) films[4812]
5051 | Film("Seven Days to Noon", 94) films[5051]
9227 +—»{ Film("A Special Day", 110) films[9227]

Figure 11.3. A map of Films

Since maps contain key—value pairs, it is common to design data structures
that work with maps in a slightly different way from those that are designed
for use with vectors and lists. Here’s a version of the Film class that we will
use to illustrate map usage:

class Film
{
public:
Film(const QString &title = "", int duration = 0);

QString title() const { return myTitle; }

void setTitle(const QString &title) { myTitle = title; }
int duration() const { return myDuration; }

void setDuration(int minutes) { myDuration = minutes; }

private:
QString myTitle;
int myDuration;

}i

250 11. Container Classes

Film::Film(const QString &title, int duration)
{

myTitle = title;

myDuration = duration;

}

We don’t store the catalog ID in the Film class since we will use that as the
key to the map. Nor do we need the comparison operators for Film. Maps are
ordered by their keys, not by their values.

The STL's map class is called std: :map<K, T> and is defined in <map>. Here’s
an example of a map whose keys are ints (catalog IDs) and whose values are
Films:

map<int, Film> films;
The Qt equivalent is gMap<k, T>:
QMap<int, Film> films;

The most natural way to insert items into a map is to assign a value to a
given key:

films[4812] = Film("A Hard Day’s Night", 85);
films[5051] = Film("Seven Days to Noon", 94);
films[1301] = Film("Day of Wrath", 105);
films[9227] = Film("A Special Day", 110);
films[1817] = Film("Day for Night", 116);

The map iterator provides a key—pair value. The key part is extracted using
(*it) .first and the value part using (*it).second:

map<int, Film>::const_iterator it = films.begin();
while (it != films.end()) {
cerr << (*it).first << m; ®
<< (*it).second.title().ascii() << endl;
++it;

}

Most compilers also allow us to write it->first and it->second, but it’s more
portable to write (*it).first and (*it).second.

The Qt map’s iterator differs slightly from the STL one. In a Qt map, the key
is retrieved from an iterator using it.key() and the value with it.data():

QMap<int, Film>::const_iterator it = films.begin();

while (it != films.end()) {
cerr << it.key() << ": " << it.dataf().title().ascii() << endl;
++it;

}
When iterating over a map, the items are always ordered by key.

The [] operator can be used for both insertion and retrieval, but if [] is used
to retrieve a value for a non-existent key, a new item will be created with the
given key and an empty value. To avoid accidentally creating empty values,
use the find() member function to retrieve items:

Maps 251

map<int, Film>::const_iterator it = films.find(1817);
if (it != films.end())
cerr << "Found " << (*it).second.title().ascii() << endl;

This function returns the end() iterator if the key is not in the map.

In the example we have used an integer key, but other types of keys are
possible, one popular choice being a 9string key. For example:

map<QString, QString> actorToNationality;
actorToNationality["Doris Day"] = "American";
actorToNationality["Greta Garbo"] = "Swedish";

If we need to store multiple values for the same key, we can use multimap<k, T>.
If we only need to store keys, we can use set<k> or multiset<k>. Qt provides no
equivalent for these classes.

Qt’s QMap<k, T> class has a couple of additional convenience functions that are
especially useful when dealing with small data sets. QMap<k, T>::keys () and
QMap<K, T>::values () return QvalueLists of a map’s keys and values.

Pointer-Based Containers

Along with the STL-like containers described in the previous sections, Qt also
provides an additional set of container classes. These classes were developed
in the early 1990s for Qt 1.0, before the STL became part of C++, and therefore
have their own particular syntax. Because these classes operate on pointers
to objects, they are often referred to as pointer-based containers, in contrast
to Qt’s and the STLs value-based containers. In Qt 4, the pointer-based
containers will continue to be available for compatibility, but it is expected
that their use will be deprecated in favor of the value-based containers.

The main reason for using the pointer-based classes in newly written Qt code
is that a few important functions in Qt 3 rely on them. We have already seen
one example of this in Chapter 3, where we iterated over an application’s
top-level widgets (p. 66), and another example in Chapter 6, where we iterated
over an application’s MDI windows (p. 156).

The main pointer-based containers are QptrVector<T>, QPtrList<T>, QDict<T>,
QAsciiDict<T>, QIntDict<T>, and QPtrDict<T>,

QPtrVector<T> stores a vector of pointers. Here’s how we would populate a
QPtrVector<Film> with five Film objects:

QPtrVector<Film> films(5);

films.setAutoDelete(true);

films.insert(0, new Film(4812, "A Hard Day'’'s Night", 85));
films.insert (1, new Film(5051, "Seven Days to Noon", 94));
films.insert(2, new Film(1301, "Day of Wrath", 105));
films.insert(3, new Film(9227, "A Special Day", 110));
films.insert(4, new Film(1817, "Day for Night", 116));

252 11. Container Classes

QPtrVector<T> does not provide an append() function, so we must resize the
vector ourselves and insert items at specific index positions. In this example,
we are using the original Film class, which includes catalog IDs.

One nice feature of Qt’s pointer-based containers is the “auto-delete” property.
If auto-delete is enabled, Qt takes ownership of all the objects inserted into
the container and deletes them when the container is deleted (or when
remove () or clear() are used).

To remove an item from the vector, we can call remove () with an index:
films.remove(2);

The remove () operation does not change the size of the vector;instead, the item
is set to a null pointer. If auto-delete is on, the item is automatically deleted.

To traverse a QptrVector<T>, we can simply use indexes:

for (int 1 = 0; 1 < (int)films.count(); ++1i) {
if (films[i])
cerr << films[i]->title().ascii() << endl;

}

We check that the pointer at the given index is not null before using it, in case
it has been erased or has never had anything assigned to it.

The ortrList<T> class stores a list of pointers. We can add new items to a
QPtrList<T> by calling append(), prepend(), or insert():

QPtrList<Film> films;

films.setAutoDelete(true);

films.append(new Film(4812, "A Hard Day’s Night", 85));
films.append(new Film(5051, "Seven Days to Noon", 94));

Pointer lists have a “current” item, which is updated when we call traversal
functions such as first (), next (), prev(), and last (). One way to iterate over
a list is like this:

Film *film = films.first();

while (film) {
cerr << film->title().ascii() << endl;
film = films.next();

}

It’s also possible to iterate over a list using at ():

for (int i = 0; i < (int)films.count(); ++i)
cerr << films.at(i)->title().ascii() << endl;

A third option is to use QPtrListIterator<T>.

The QDict<T>, QAsciiDict<T>, QIntDict<T>, and QPtrDict<T> classes are the
nearest pointer-based equivalents to map<k, T>. These classes also operate on
key—value pairs. The key can be any one of four different types (QString, const
char *, int, or void *), depending on which of the four classes is used. Since
all four classes provide the same functions, we will just look at QIntDict<T>.

Pointer-Based Containers 253

We will use this to store Films of the same type we used with map<k, T> earlier,
using catalog IDs as keys.

QIntDict<Film> films(101);
films.setAutoDelete(true);

The QIntDict<T> constructor accepts a number. That number is used internal-
ly by the class to determine how many “buckets” it puts the data into. For good
performance, that number should be a prime number a little larger than the
number of items we expect to hold. A list of the prime numbers smaller than
10,000 is available at http://doc.trolltech.com/3.2/primes.html.

Inserting new items is done with insert (), which accepts a key and a value:

films.insert (4812, new Film("A Hard Day’s Night", 85))
films.insert (5051, new Film("Seven Days to Noon", 94))

We can use find() or the [] operator to look up items, remove() to delete an
item, and replace() to change the value associated with a given key.

If we call insert() multiple times with the same key, only the most recently
inserted item will be accessible. If we call remove (), the items are removed in
the reverse order in which they were inserted. To avoid multiple values under
the same key, we can use replace() instead of insert().

The entire container can be traversed using an iterator:

QIntDictIterator<Film> it (films);
while (it.current()) {
cerr << it.currentKey() << ": "
<< it.current()->title().ascii() << endl;
++it;

}

The iterator provides the current key with currentkey () and the current value
with current (). The order in which the items appear is undefined.

Qt provides a special vector-like class, QMemArray<T>, for storing items of
basic types like int and double or of structs of basic types. Few applications
use it directly; however, its two subclasses QByteArray (QMemArray<char>) and
QPointArray (QMemArray<QPoint>) are very common, and we have used them
many times in earlier chapters.

For example, here’s how to create a QBytearray:

QByteArray bytes (4);

bytes[0] = 'A’;
bytes[1] = 'C’;
bytes[2] = 'D’;
bytes[3] = 'C’;

When we create a QMemArray<T>, we can either pass it an initial size or call
resize() later. We can then access array entries using the [] operator:

for (int 1 = 0; 1 < (int)bytes.size(); ++i)
cerr << bytes[i] << endl;

254 11. Container Classes

We can search for an item using QMemArray<T>::find():

if (bytes.find(’A’) != -1)
cerr << "Found" << endl;

A subtle pitfall with QMemArray<T> and its subclasses is that they are explicitly
shared. This means that when we create a copy of an object (using the class’s
copy constructor or its assignment operator), both the original and the copy
share the same data. When we modify one of them, the other one is also
modified. Explicit sharing should not be confused with implicit sharing,
which does not have this problem.

The defensive way to program using QMemArray<T> is to call copy() to force a
deep copy of the container when copying it:

duplicate = bytes.copy();
This ensures that no two QMemArray<T> objects point to the same data.

To avoid the inherent problems of explicit sharing, the QMemArray<T> class will
probably be deprecated in favor of Qvaluevector<T>in Qt 4. The QByteArray and
QPointArray classes will then use Qvaluevector<T> as their base class.

QString and QVariant

Strings are used by every GUI program, not only for the user interface, but
often also as data structures.

C++ natively provides two kinds of strings: traditional C-style \0’-terminated
character arrays and the string class. Qt’s QString class is more powerful
than either of them. The Qstring class holds 16-bit Unicode values. Unicode
contains ASCII and Latin-1 as a subset, with their usual numeric values.
But since QString is 16-bit, it can represent thousands of other characters for
writing most of the world’s languages. See Chapter 15 for more information
about Unicode.

QString provides a binary + operator to concatenate two strings and a += oper-
ator to append one string to another. Here’s an example that combines both:

QString str = "User: ";
str += userName + "\n";

There is also a QString::append() function that does the same thing as the
+= operator:

str = "User: ";
str.append(userName) ;
str.append("\n");

A completely different way of combining strings is to use QString’s sprintf ()
function:

str.sprintf("%s %.1£%%", "perfect competition", 100.0);

QString and QVariant 255

This function supports the same format specifiers as the C++ library’s
sprintf () function. In the example above, str is assigned “perfect competi-
tion 100.0%”.

Yet another way of building a string from other strings or from numbers is to
use arg():

str = QString ("%l %2 (%3s-%4s)")
.arg("permissive").arg("society").arg(1950) .arg(1970);

In this example, “%1” is replaced by “permissive”, “%2” is replaced by “society”,
“%3” is replaced by “1950”, and “%4” is replaced by “1970”. The result is
“permissive society (1950s-1970s)”. There are arg() overloads to handle vari-
ous data types. Some overloads have extra parameters for controlling the field
width, the numerical base, or the floating-point precision. In general, arg() is
a much better solution than sprintf (), because it is type-safe, fully supports
Unicode, and allows translators to change the order of the “%n” parameters.

QString can convert numbers into strings using the QString: :number () static
function:

str = QString::number(59.6);
Or using the setNum() function:
str.setNum(59.6);

The reverse conversion, from a string to a number, is achieved using toInt(),
toLongLong (), toDouble(), and so on. For example:

bool ok;
double d = str.toDouble(&o0k);

These functions also accept an optional pointer to a bool and set the bool to
true or false depending on the success of the conversion. When the conversion
fails, these functions always return 0.

Once we have a string, we often want to extract parts of it. The mid() function
returns the substring starting at a given position and of a given length. For
example, the following code prints “pays” to the console:

QString str = "polluter pays principle";
cerr << str.mid(9, 4).ascii() << endl;

If we omit the second argument (or pass -1), mid() returns the substring
starting at a given position and ending at the end of the string. For example,
the following code prints “pays principle” to the console:

QString str = "polluter pays principle";
cerr << gtr.mid(9).ascii() << endl;

There are also left() and right () functions that perform a similar job. Both
accept a number of characters, n, and return the first or last n characters
of the string. For example, the following code prints “polluter principle” to
the console:

256 11. Container Classes

QString str = "polluter pays principle";
cerr << str.left(8).ascii() << ™ "™ << gtr.right(9).ascii()
<< endl;

If we want to check if a string starts or ends with something, we can use the
startsWith() and endswith() functions:

if (uri.startsWith("http:") && uri.endsWith(".png")

This is both simpler and faster than this:

if (uri.left(5) == "http:" && uri.right(4) == ".png")

String comparison with the == operator is case sensitive. For case insensitive
comparisons, we can use upper () or lower (). For example:

if (fileName.lower() == "readme.txt")

If we want to replace a certain part of a string by another string, we can use
replace():

QString str = "a sunny day";
str.replace(2, 5, "cloudy");

The result is “a cloudy day”. The code can be rewritten to use remove() and
insert():

str.remove(2, 5);
str.insert (2, "cloudy");

First, we remove five characters starting at position 2, resulting in the string
“a day” (with two spaces), then we insert “cloudy” at position 2.

There are overloaded versions of replace() that replace all occurrences of
their first argument with their second argument. For example, here’s how to
replace all occurrences of “&” with “&” in a string:

str.replace("&", "&");

One very frequent need is to strip the whitespace (such as spaces, tabs, and
newlines) from a string. QString has a function that strips whitespace from
both ends of a string:

QString str = " BOB \t THE \nDOG \n";
cerr << gstr.stripWhiteSpace().ascii() << endl;

String str can be depicted as

L[[IefolB] [¢] [TI[HIE[[[n[D]O]G] |wn]

The string returned by stripwhiteSpace() is

[BIo[B] [w[[TIHIE[[Iw[D[O]G]

QString and QVariant 257

When handling user input, we often also want to replace every sequence of
one or more internal whitespace characters with single spaces, in addition to
stripping whitespace from both ends. This is what the simplifyWhiteSpace()
function does:

QString str = " BOB \t THE \nDOG \n";
cerr << str.simplifyWhiteSpace().ascii() << endl;

The string returned by simplifyWhiteSpace() is

Blo[B] [T[HIE[[D]o]G]

A string can be split into substrings using QStringList::split():

QString str = "polluter pays principle";

QStringList words = QStringList::split("™ ", str);
In the example above, we split the string “polluter pays principle” into three
substrings: “polluter”, “pays”, and “principle”. The split() function has an
optional bool third argument that specifies whether empty substrings should

be ignored (the default) or not.

The elements in a QStringList can be joined to form a single string using
join().The argument to join() isinserted between each pair of joined strings.
For example, here’s how to create a single string that is composed of all the
strings contained in a QStringList sorted into alphabetical order and separat-
ed by newlines:

words.sort () ;
str = words.join("\n");

When dealing with strings, we often need to determine whether a string is
empty or not. One way of testing this is to call isEmpty(); another way is to
check whether length() is 0.

QString distinguishes between null strings and empty strings. This distinction
has its roots in the C language, which differentiates between 0 (a null pointer)
and " (an empty string). To test whether a string is null, we can call isNull ().
For most applications, what matters is whether or not a string contains any
characters. The isEmpty () function provides this information, returning true
if a string has no characters (is null or empty), and false otherwise.

The conversions between const char * strings and QString is automatic in most
cases, for example:

str += " (1870)";
Here we add a const char * to a QString without formality.

In some situations, it is necessary to explicitly convert between const char *
and QString. To convert a QString to a const char *,use ascii() or latinl().To
convert the other way, use a QString cast.

258 11. Container Classes

When we call ascii() or latinl() on a QString, or when we let the automatic
conversion to const char * do its work, the returned string is owned by the
QString object. This means that we don’t need to worry about memory leaks;
Qt will reclaim the memory for us. On the other hand, we must be careful not
to use the pointer for too long. For example, if we modify the original QString,
the pointer is not guaranteed to remain valid. If we need to store the const
char * for any length of time, we can assign it to a variable of type QByteArray
or ocstring. These will hold a complete copy of the data.

QString is implicitly shared. This means that copying a QString is about as
fast as copying a single pointer. Only if one of the copies is changed is data
actually copied—and this is all handled automatically behind the scenes. For
this reason, implicit sharing is sometimes referred to as “copy on write”.

The beauty of implicit sharing is that it is an optimization that we don’t have
to think about; it simply works, without requiring any programmer inter-
vention.

Qt uses implicit sharing for many other classes, including QBrush, QFont, QPen,
QPixmap, QMap<K, T>, QValueList<T>, and QvalueVector<T>. This makes these
classes very efficient to pass by value, both as function parameters and as
return values.

C++ is a strongly typed language, and this provides many benefits, including
type safety and efficiency. However, in some situations, it is useful to be able
to store data more generically, and one conventional way of doing so is to use
strings. For example, a string could hold a textual value or a numeric value in
string form. Qt provides a much cleaner way of handling variables that can
hold different types: Qvariant.

The gvariant class can hold values of many Qt types, including QBrush, QCol-
or, QCursor, QDateTime, QFont, QKeySequence, QPalette, QPen, QPixmap, QPoint,
QRect, QRegion, QSize, and QString. The Qvariant class can also hold contain-
ers: QMap<QString, QVariant>, QStringList,and QvalueList<Qvariant>. We used a
QVariant in the implementation of the Spreadsheet application in Chapter 4 to
hold the value of a cell, which could be either a QString, a double, or an invalid
value.

One common use of variantsisin a map that uses strings as keys and variants
asvalues. Configuration data isnormally saved and retrieved using QSettings,
but some applications may handle this data directly, perhaps storing it in a
database. QMap<QString, Qvariant> is ideal for such situations:

QMap<QString, QVariant> config;

config["width"] = 890;

config["Height"] = 645;

config["ForegroundColor"] = black;
config["BackgroundColor"] = lightGray;
config["SavedDate"] = QDateTime::currentDateTime();

QStringList files;
files << "2003-05.dat" << "2003-06.dat" << "2003-07.dat";
config["RecentFiles"] = files;

QString and QVariant 259

How Implicit Sharing Works

Implicit sharing works automatically behind the scenes, so when we use
classes that are implicitly shared, we don’t have to do anything in our code
to make this optimization happen. But since it’s nice to know how things
work, we will study an example and see what happens under the hood.

QString strl = "Humpty";
QString str2 = strl;

We set strl to “Humpty” and str2 to be equal to stri. At this point, both
QStrings point to the same data structure in memory (of type QStringData).
Along with the character data, the data structure holds a reference count
that indicates how many QStrings point to the same data structure. Since
both strl and str2 point to the same data, the reference count is 2.

str2[0] = 'D’;

When we modify str2, it first makes a deep copy of the data, to ensure
that str1 and str2 point to different data structures, and it then applies
the change to its own copy of the data. The reference count of stri’s data
(“Humpty”) becomes 1, and the reference count of str2’s data (“Dumpty”)is
set to 1. A reference count of 1 means that the data isn’t shared.

str2.truncate(4);

If we modify str2 again, no copying takes place because the reference count
of str2’s data is 1. The truncate() function operates directly on str2’s data,
resulting in the string “Dump”. The reference count stays at 1.

strl = str2;

When we assign str2 to stri, the reference count for stri’s data goes down
to 0, which means that no QStringis using the “Humpty” data anymore. The
data is then freed from memory. Both 9strings now point to “Dump”, which
now has a reference count of 2.

Writing implicitly shared classes isn’t very difficult. The Q¢ Quarterly ar-
ticle “Data Sharing with Class”, available online at http://doc.trolltech.
com/qq/qq02-data-sharing-with-class.html, explains how to do it

Iterating over a map that holds variant values can be slightly tricky if some
of the values are containers. We need to use type() to check the type that a
variant holds so that we can respond appropriately:

QMap<QString, QVariant>::const_iterator it = config.begin();

while (it != config.end()) {
QString str;
if (it.data().type() == QVariant::StringList
str = it.data().toStringList().join(", ");
else

str = it.data().toString();
cerr << it.key().ascii() << ": " << str.ascii() << endl;

260 11. Container Classes

++it;

}

It is possible to create arbitrarily complex data structures using Qvariant by
holding values of container types:

QMap<QString, QVariant> price;

price["Orange"] = 2.10;

price["Pear"].asMap() ["Standard"] = 1.95;

price["Pear"] .asMap() ["Organic"] = 2.25;
[=

price["Pineapple"] 3.85;

Here we have created a map with string keys (product names) and values that
are either floating-point numbers (prices) or maps. The top level map contains
three keys: “Orange”, “Pear”, and “Pineapple”. The value associated with the
“Pear” key is a map that contains two keys (“Standard” and “Organic”).

Creating data structureslike this can be very seductive since we can structure
the data in any way we like. But the convenience of Qvariant comes at a price.
For the sake of readability, it is usually worth defining a proper C++ class
to store our data. A custom class provides type safety and will also be more
speed- and memory-efficient than using Qvariant.

¢ Connecting and Querying

® Presenting Data in Tabular
Form

* Creating Data-Aware Forms

Databases

Qt’s SQL module provides a platform- and database-independent interface for
accessing SQL databases, and a set of classes for integrating databases into
the user interface.

The chapter begins by showing how to open database connections and how
to execute arbitrary SQL statements on a database. The second and third
sections focus on providing the user with ways of viewing and modifying a
database through the user interface, using QbataTable to present data in a
table widget and using 0SqlForm to present data as a form. These classes are
designed to interact nicely with each other, making common database idioms
such as master—detail views and drill-down easy to implement.

Connecting and Querying

To execute SQL queries, we must first establish a connection with a database.
Typically, database connections are set up in a separate function that we call
at application startup. For example:

bool createConnection()
{
QSglDatabase *db = QSglDatabase::addDatabase("QOCI8");
db->setHostName ("mozart.konkordia.edu");
db->setDatabaseName ("musicdb") ;
db->setUserName ("gbatstone") ;
db->setPassword ("T17av4d") ;
if (!db->open()) {
db->lastError().showMessage() ;
return false;
}

return true;

261

262 12. Databases

First, we call QSglDatabase::addDatabase() to create a QSqlDatabase object.
The argument to addDatabase () specifies which database driver Qt must use
to access the database. In this case, we use Oracle. The commercial version
of Qt 3.2 includes the following drivers: gopec3 (ODBC), gocis (Oracle), QTDS7
(Sybase Adaptive Server), QpsoL7 (PostgreSQL), ouyson3 (MySQL), and gpB2
(IBM DB2). The free and non-commercial editions contain a subset of these.*
See http://doc.trolltech.com/3.2/sqgl-driver.html for information on build-
ing the database drivers.

Next, we set the database host name, the database name, the user name, and
the password, and we try to open the connection. If open() fails, we show an
error message using QSqlError: : showMessage().

Typically, we would call createConnection() in main():

int main(int argc, char *argv[])
{
QApplication app(argc, argv);
if (!createConnection())
return 1;

return app.exec();

}

Once a connection is established, we can use QSqlQuery to execute any SQL
statement that the underlying database supports. For example, here’s how to
execute a SELECT statement:

QSglQuery query;
query.exec ("SELECT title, year FROM cd WHERE year >= 1998");

After the exec () call, we can navigate through the query’s result set:

while (query.next()) {
QString title = query.value(0).toString();
int year = query.value(l).toInt();
cerr << title.ascii() << ": " << year << endl;

}

We call next () once to position the QSglQuery on the first record of the result
set. Subsequent calls to next () advance the record pointer by one record each
time, until the end is reached, at which point next () returns false. If the result
set is empty, the first call to next () will return false.

The value() function returns the value of a field as a Qvariant. The fields are
numbered from 0 in the order given in the SELECT statement. The Qvariant
class can hold many C++ and Qt types, including int and QString. The differ-
ent types of data that can be stored in a database are mapped into the corre-
sponding C++ and Qt types and stored in Qvariants. For example, a VARCHAR is
represented as a QString and a DATETIME as a QDateTime.

*The Qt packages on the accompanying CD include SQLite, a public domain in-process database,
and QSQLITEX, an experimental driver. These are only intended for use with the examples on
the CD.

Connecting and Querying 263

0SqlQuery provides some other functions to navigate through the result set:
first(), last(), prev(), seek(), and at (). These functions are convenient, but
for some databases they can be slow and memory-hungry. For an easy opti-
mization when operating on large data sets, we can call QSqlQuery: :setFor-
wardOnly (true) before calling exec(), and then only use next () for navigating
the result set.

Earlier we specified the SQL query as an argument to exec (), but we can also
pass it directly to the constructor, which executes it immediately:

QSglQuery query("SELECT title, year FROM cd WHERE year >= 1998");

Here’s how we would check for an error and pop up a QMessageBox if a problem
occurred:

if (!query.isActive())
query.lastError().showMessage();

Doing an INSERT is almost as easy as doing a SELECT:

0SglQuery query("INSERT INTO cd (id, artistid, title, year) "
"VALUES (203, 102, 'Living in America’, 2002)");

After this, QSqlQuery::numRowsAffected() returns the number of rows that
were affected by the SQL statement (or -1 if the database cannot provide
that information).

If we need to insert a lot of records, or if we want to avoid converting values
to strings (and escaping them correctly), we can use prepare() to specify a
query that contains placeholders and then bind the values we want to insert.
Qt supports both the Oracle-style and the ODBC-style syntax for placeholders
for all databases, using native support where it is available and simulating it
otherwise. Here’s an example that uses the Oracle-style syntax with named
placeholders:

0SqglQuery query(db);

query.prepare("INSERT INTO cd (id, artistid, title, year) "
"VALUES (:1d, :artistid, :title, :year)");

query.bindvalue(":id", 203);

query.bindvalue(":artistid", 102);

query.bindvalue(":title", QString("Living in America"));

query.bindvalue(":year", 2002);

query.exec();

Here’s the same example using ODBC-style positional placeholders:

0SqglQuery query(db);

query.prepare ("INSERT INTO cd (id, artistid, title, year) "
"VALUES (?, 2, ?, ?)");

query.addBindvValue(203);

query.addBindvalue(102);

query.addBindValue(QStrlng("LlVlng in America"));

query.addBindvalue(2002) ;

query.exec();

264 12. Databases

After the call to prepare(), we can call bindvalue() or addBindvalue() to bind
new values, then call exec() again to execute the query with the new values.

Placeholders are often used to specify binary data or strings that contain non-
ASCII or non-Latin-1 characters. Behind the scenes, Qt uses Unicode with
those databases that support Unicode, and for those that don’t, Qt transpar-
ently converts strings to the appropriate encoding.

Qt supports SQL transactions on databases where they are available. To start
a transaction, we call transaction() onthe QSglDatabase object that represents
the database connection. To terminate the transaction, we call either commit ()
or rollback(). For example, here’s how we would look up a foreign key and
execute an INSERT statement inside a transaction:

QSglDatabase::database()->transaction();
QSglQuery query;
query.exec ("SELECT id FROM artist WHERE name = ’Gluecifer’");
if (query.next()) {
int artistId = query.value(0).toInt();
query.exec ("INSERT INTO cd (id, artistid, title, year) "
"VALUES (201, "™ + QString::number(artistId)
+ ", 'Riding the Tiger’, 1997)");
}
QSglDatabase::database()->commit () ;

The QSqglDatabase::database() function returns a pointer to the QSqlDatabase
object we created in createConnection(). If a transaction cannot be started,
QSglDatabase::transaction() returns false

Some databases don’t support transactions. For those, the transaction(), com-
mit (), and rollback() functions do nothing. We can test whether a database
supports transactions using hasFeature() on the QSqlbriver associated with
the database:

QSglDriver *driver = QSglDatabase::database()->driver();
if (driver->hasFeature(QSqglDriver::Transactions))

In the examples so far, we have assumed that the application is using a single
database connection. If we want to use multiple connections, we can pass a
name as second argument to addbatabase (). For example:

0SglDatabase *db = QSglDatabase::addDatabase("QPSQL7", "OTHER");
db->setHostName ("saturn.mcmanamy.edu") ;

db->setDatabaseName ("starsdb") ;

db->setUserName ("gilbert");

db->setPassword("ixtapa6") ;

We can then retrieve a pointer to the 9sglDatabase object by passing the name
to QSglDatabase: :database():

QSglDatabase *db = QSglDatabase::database("OTHER") ;

To execute queries using the other connection, we pass the QSqlDatabase object
to the 0SglQuery constructor:

Connecting and Querying 265

QSglQuery query(db);
query.exec ("SELECT id FROM artist WHERE name = ’'Mando Diao’");

Multiple connections are useful if we want to perform more than one transac-
tion at a time, since each connection can only handle a single active transac-
tion. When we use multiple database connections, we can still have one name-
less connection, and QSqlQuery will use that connection if none is specified.

In addition to QsqlQuery, Qt provides the QsqglcCursor class, a higher-level class
that inherits 0SqlQuery and extends it with convenience functions so that
we can avoid typing raw SQL for performing the most common SQL opera-
tions: SELECT, INSERT, UPDATE, and DELETE. QSqlCursor is also the class that ties a
QDataTable to a database. We will cover QSqglcCursor here, and in the next sec-
tion we will see how to use QDataTable, a database-aware QTable subclass.

Here’s an example that uses QSqlcCursor to perform a SELECT:

QSglCursor cursor("cd");
cursor.select("year >= 1998");

An equivalent 9sqlQuery would be

QSqlQuery query("SELECT id, artistid, title, year FROM cd "
"WHERE year >= 1998");

Navigating through the result set is the same as for QSqlQuery, except that we
can pass field names to value() instead of field numbers:

while (cursor.next()) {
QString title = cursor.value("title").toString();
int year = cursor.value("year").toInt();
cerr << title.ascii() << ": " << year << endl;

}

To insert a record into a table, we must first call primeInsert (), which returns
a pointer to a new QSqlRecord. Then we call setvalue() for each of the fields
in the QSglRecord that we want to set, and we call insert() to insert the
0SqlRecord’s data into the database. For example:

QSglCursor cursor("cd");

QSglRecord *buffer = cursor.primelnsert();
buffer->setvalue("id", 113);
buffer->setvValue("artistid", 224);
buffer->setValue("title", "Shanghai My Heart");
buffer->setValue("year", 2003);
cursor.insert();

To update a record, we must first position the QSqlcursor on the record we want
to modify (for example, using select () and next ()). Then we call primeUpdate ()
to get a pointer to a 9SglRecord that contains a copy of the record’s data. We
can then use setvalue() to set the fields we want to change, and call update()
to write these changes back to the database. For example:

QSglCursor cursor("cd");
cursor.select("id = 125");

266 12. Databases

if (cursor.next()) {
0SglRecord *buffer = cursor.primeUpdate();
buffer->setValue("title", "Melody A.M.");
buffer->setValue("year", buffer->value("year").toInt() + 1);
cursor.update() ;

}

Deleting a record is similar to updating, but easier:

QSglCursor cursor("cd");

cursor.select("id = 128");

if (cursor.next()) {
cursor.primeDelete() ;
cursor.del();

}

The 0sqlQuery and QSqglCursor classes provide an interface between Qt and
a SQL database. In the next two sections, we will see how to use them from
within a GUI application to allow the user to view and interact with the data
stored in a database.

Presenting Data in Tabular Form

The gpataTable class is a database-aware QTable widget that supports brows-
ing and editing. It interacts with a database through a Qsqlcursor. Here, we
will review two dialogs that use gbataTable. Together with the QSqlForm-based
dialog presented in the next section, these forms constitute the CD Collection
application.

The application uses three tables, defined as follows:

CREATE TABLE artist (
id INTEGER PRIMARY KEY,
name VARCHAR(40) NOT NULL,
country VARCHAR(40));

CREATE TABLE cd (
id INTEGER PRIMARY KEY,
artistid INTEGER NOT NULL,
title VARCHAR(40) NOT NULL,
year INTEGER NOT NULL,
FOREIGN KEY (artistid) REFERENCES artist);

CREATE TABLE track (
id INTEGER PRIMARY KEY,
cdid INTEGER NOT NULL,
number INTEGER NOT NULL,
title VARCHAR(40) NOT NULL,
duration INTEGER NOT NULL,
FOREIGN KEY (cdid) REFERENCES cd);

Some databases don’t support foreign keys. For those, we must remove the
FOREICN KEY clauses. The example will still work, but the database will not
enforce referential integrity.

Presenting Data in Tabular Form

267

1:N

track

artist cd
id 1:N id
name artistid
country title
year

id

cdid
number
title
duration

Figure 12.1. The CD Collection application’s tables

The first class that we will write is a dialog that allows the user to edit a list
of artists. The user can insert, update, or delete artists using the QpataTable’s
context menu. The changes are applied to the database when the user clicks

Update.

EC=1ES

Marne

I Country

Melvins

£ A

1 Gluecifer
2

Upciat
Strapping oung Lac RS

Update I

Morway

Cancel

Figure 12.2. The ArtistForm dialog

Here’s the class definition for the dialog:

class ArtistForm : public QDialog

{
Q_OBJECT
public:
ArtistForm(QWidget *parent =

protected slots:
void accept();
void reject();

private slots:

void primelInsertArtist(QSqglRecord *buffer)
void beforeInsertArtist(QSqglRecord *buffer
void beforeDeleteArtist(QSglRecord *buffer);

private:
QSglDatabase *db;
QDataTable *artistTable;
QPushButton *updateButton;

const char *name = 0);

268 12. Databases

QPushButton *cancelButton;

Vi
The accept () and reject () slots are reimplemented from Qpialog.

ArtistForm::ArtistForm(QWidget *parent, const char *name)
: QDialog(parent, name)

{
setCaption(tr("Update Artists"));

db = QSglDatabase::database("ARTIST");
db->transaction();

QSglCursor *artistCursor = new QSglCursor("artist", true, db);
artistTable = new QDataTable(artistCursor, false, this);
artistTable->addColumn("name", tr("Name"));
artistTable->addColumn ("country", tr("Country"));
artistTable->setAutoDelete(true);
artistTable->setConfirmDelete(true);
artistTable->setSorting(true);

artistTable->refresh();

updateButton = new QPushButton(tr("Update"), this);
updateButton->setDefault (true);
cancelButton = new QPushButton(tr("Cancel"), this);

In the ArtistForm constructor, we start a transaction using the “ARTIST”
database connection. Then we create a 0Sqlcursor on the database’s artist
table, and a QDataTable to display it.

The second argument to the 9SqlcCursor constructor is an “auto-populate” flag.
By passing true, we tell 9sqlcursor to load information about every field in the
table and to operate on all the fields.

The gpataTable constructor’s second argument is also an auto-populate flag.
If true, the QDataTable automatically creates columns for each field in the
QSqlcursor’s result set. We pass false and call addColumn() to provide two
columns corresponding to the result set’s name and country fields.

We pass ownership of the gsqlcursor to the QpDataTable by calling setAuto-
Delete(), so we don’t need to delete it ourselves. We call setConfirmbelete()
to make the QpataTable pop up a message box asking the user to confirm dele-
tions. We call setSorting(true) to allow the user to click on the column head-
ers to sort the table according to a certain column. Finally, we call refresh()
to populate the QpataTable with data from the database.

We also create an Update and a Cancel button.

connect (artistTable, SIGNAL(beforeDelete(QSglRecord *)),
this, SLOT(beforeDeleteArtist(QSglRecord *)));
connect (artistTable, SIGNAL(primeInsert(QSglRecord *)),
this, SLOT(primeInsertArtist(QSglRecord *)));
connect (artistTable, SIGNAL(beforeInsert(QSglRecord *)),
this, SLOT(beforeInsertArtist(QSglRecord *)));
connect (updateButton, SIGNAL(clicked()),
this, SLOT(accept()));

Presenting Data in Tabular Form 269

connect (cancelButton, SIGNAL(clicked()),
this, SLOT(reject()));

We connect three of the gdataTable’s signals to three private slots. We connect
the Update button to accept () and the Cancel button to reject ().

QHBoxLayout *buttonLayout = new QHBoxLayout;
buttonLayout->addStretch(1);
buttonLayout->addWidget (updateButton) ;
buttonLayout->addWidget (cancelButton) ;

QVBoxLayout *mainLayout =
mainLayout->setMargin(11);
mainLayout->setSpacing(6) ;
mainLayout->addWidget (artistTable) ;
mainLayout->addLayout (buttonLayout) ;

new QVBoxLayout (this);

}

Finally, we put the QPushButtons into a horizontal layout, and we put the
QDataTable and the horizontal layout into a vertical layout.

void ArtistForm::accept()
{
db->commit () ;
QDialog::accept();
}

If the user clicks Update, we commit the transaction and call the base class’s
accept () function.

void ArtistForm::reject()

{
db->rollback() ;
QDialog::reject();
}

If the user clicks Cancel, we roll back the transaction and call the base class’s
reject () function.

void ArtistForm::beforeDeleteArtist(QSglRecord *buffer)
{
QSglQuery query(db);
query.exec ("DELETE FROM track WHERE track.id IN "
"(SELECT track.id FROM track, cd "
"WHERE track.cdid = cd.id AND cd.artistid ="
+ buffer->value("id").toString() + ")");
query.exec ("DELETE FROM cd WHERE artistid = "
+ buffer->value("id").toString());

}

The beforeDeleteArtist() slot is connected to the QpataTable’s beforebelete()
signal, which is emitted just before a record is deleted. Here, we perform a
cascading delete by executing two queries: one to delete all the tracks from
CDs by the artist and one to delete all the CDs by the artist. Performing these
deletions does not risk relational integrity, because they are all done within
the context of the transaction that began in the form’s constructor.

270 12. Databases

Another approach would have been to prevent the user from deleting artists
that are referred to by the cd table. To achieve this, we would have to reim-
plement QDataTable: : contextMenuEvent () so that we could handle the deletion
ourselves. A crude alternative that will work if the database has been set up
to enforce relational integrity is to simply attempt the deletion and leave it to
the database to prevent it.

void ArtistForm::primeInsertArtist(QSqglRecord *buffer)

{

buffer->setvValue("country", "USA");

}

The primeInsertArtist() slot is connected to the QDataTable’s primeInsert (
signal, which is emitted just before the user starts editing a new record. We
use it to set the default value of the new record’s country field to “USA”, the
ideal default for a U.S.-centric application.

This is one way of setting default values for fields. Another way is to subclass
Qsqlcursor and reimplement primeInsert (), which makes sense if we will use
the same QSqglCursor many times in the same application and want to ensure
consistent behavior. A third way is to do it at the database level, using DEFAULT
clauses in the CREATE TABLE statements.

void ArtistForm::beforeInsertArtist(QSqlRecord *buffer)

{
buffer->setvValue("id", generateId("artist", db));

}

The beforeInsertArtist() slot is connected to the QpataTable’s beforeInsert ()
signal, which is emitted when the user has finished editing a new record and
presses Enter to save it. We set the value of the id field to a generated value.
We rely on a function called generate1d() to produce a unique primary key.

Since we will need generateId() a few times, we define it inline in a header
file and include it each time we need it. Here’s a quick (and inefficient) way of
implementing it:

inline int generateId(const QString &table, QSglDatabase *db)
{

0SqglQuery query(db);

query.exec ("SELECT max(id) FROM " + table);

query.next () ;

return query.value(0).toInt() + 1;

}

The generateld() function can only be guaranteed to work correctly if it is
executed within the context of the same transaction as the corresponding
INSERT statement.

Some databases support auto-generated fields. For these, we simply need
to tell the database to auto-generate the id field and call setGenerated("id",
false) on the gsqglcursor to tell it not to generate the value of the id field.

Presenting Data in Tabular Form 271

We will now review another dialog that uses QDataTable. For this dialog, we
will implement a master—detail view. The master view is a list of CDs. The
detail view is a list of tracks for the current CD. This dialog is the main
window of the CD Collection application.

This time, we provide Add, Edit, and Delete buttons to allow the user to modify
the CD list, rather than relying on a context menu. When the user clicks Add
or Edit, a CdForm dialog pops up. (CdFormis covered in the next section.)

co | rtist | country | vear | =l
Z Easy Living Gluecifer Motway 2002
3 Living in America The Sounds Sweden 2002
5_ Stang Melving LS4, 1996
& Hostile Ambient Take| Melvins LISA 2002 —
7 26 Songs Melving LS4, 2003
g City Strapping Young Lad Canada 1997 LI
Track Duration =]
1 Boris 514
2_ Anaconda. 143
3_ Ligature: 229 pu—
4_ It's Shaved 155
z Zadia 254 ﬂ
Arldl I Exdit | Delete | Fefresh | Lt |
I I

Figure 12.3. The MainForm dialog

Another difference between this example and the previous one is that we must
resolve a foreign key, so we can show the artist’sname and country rather than
the artist’s ID. To accomplish this, we must use QSqlSelectCursor, a subclass of
QSqlcursor that supports arbitrary SELECT statements, in this case a join.

First, the class definition:

class MainForm : public QDialog
{
Q_OBJECT
public:
MainForm(QWidget *parent = 0, const char *name = 0);

private slots:
void addcd();
void editCd();
void deleteCd();
void currentCdChanged(QSglRecord *record) ;

private:
QSplitter *splitter;
QDataTable *cdTable;
QDataTable *trackTable;
QPushButton *addButton;

272 12. Databases

QPushButton *quitButton;
}i

The MainForm class inherits from QDialog.

MainForm::MainForm(QWidget *parent, const char *name)
: QDialog(parent, name)

{
setCaption(tr("CD Collection"));

splitter = new QSplitter(Vertical, this);

QSglSelectCursor *cdCursor = new QSglSelectCursor(
"SELECT cd.id, title, name, country, year "
"FROM cd, artist WHERE cd.artistid = artist.id");
if (!cdCursor->isActive()) {
QMessageBox::critical (this, tr("CD Collection"),
tr("The database has not been created.\n"
"Run the cdtables example to create a sample "
"database, then copy cdcollection.dat into ™"
"this directory and restart this application."));
gApp—>quit () ;
}

cdTable = new QDataTable(cdCursor, false, splitter);
cdTable->addColumn("title", tr("CD"));
cdTable->addColumn ("name", tr("Artist"));
cdTable->addColumn ("country", tr("Country"));
cdTable->addColumn ("year", tr("Year"));
cdTable->setAutoDelete(true);

cdTable->refresh();

In the constructor, we create a read-only QpataTable for the cd table and its as-
sociated cursor. The cursor is based on a query that joins the cd and the artist
tables. The QpataTable is read-only because it operates on a QSglSelectCursor.
Read-only tables don’t provide a context menu.

If the cursor query fails, we pop up a message box indicating that something
is wrong and terminate the application.

QSglCursor *trackCursor = new QSglCursor("track");
trackCursor->setMode (QSglCursor: :ReadOnly) ;

trackTable = new QDataTable(trackCursor, false, splitter);
trackTable->setSort (trackCursor->index ("number")) ;
trackTable->addColumn("title", tr("Track"));
trackTable->addColumn("duration", tr("Duration"));

We create the second gbataTable and its cursor. We make the table read-only
by calling setMode (QSglCursor: :ReadOnly) on the cursor, and call setSort() to
sort the tracks by track number.

addButton = new QPushButton(tr("&Add"), this);
editButton = new QPushButton(tr("&Edit"), this);
deleteButton = new QPushButton(tr("&Delete"), this);
refreshButton = new QPushButton(tr("&Refresh"), this);
quitButton = new QPushButton(tr("&Quit"), this);

Presenting Data in Tabular Form 273

connect (addButton, SIGNAL(clicked()),
this, SLOT(addCd()));

connect (quitButton, SIGNAL(clicked()),
this, SLOT(close()));
connect (cdTable, SIGNAL(currentChanged(QSglRecord *)),
this, SLOT(currentCdChanged(QSglRecord *)));
connect (cdTable,
SIGNAL (doubleClicked(int, int, int, const QPoint &)),
this, SLOT(editCd()));

}

We set up the rest of the user interface and create the signal—slot connections
necessary to produce the desired behavior.

void MainForm::addCd()
{
CdForm form(this);
if (form.exec()) {
cdTable->refresh();
trackTable->refresh();

}

When the user clicks Add, we pop up a modal cdrorm dialog, and if the user
clicks Update on it, we refresh the gpataTables.

void MainForm::editCd()
{
QSglRecord *record = cdTable->currentRecord();
if (record) f{
CdForm form(record->value("id").toInt(), thisg);
if (form.exec()) {
cdTable->refresh();
trackTable->refresh();

}

When the user clicks Edit, we pop up a modal cdfForm dialog, with the current
CD’s ID as argument to the cdForm constructor. This will cause the dialog to
start up with its fields populated with the current CD’s data.

When we parameterize a form with an ID as we have done here, it is possible
that the ID will not be valid by the time the form appears. For example, the
user could click Edit a fraction of a second before another user deletes the
CD. What we could have done in cdForm is to execute a SELECT on the ID that
is passed in immediately after the transaction() call and only proceed if the
ID still exists. Here, we simply rely on the database to report an error if an
attempt to use an invalid ID is made.

void MainForm::deleteCd()
{

QSglRecord *record = cdTable->currentRecord();

274 12. Databases

if (record) {
QSglQuery query;
query.exec ("DELETE FROM track WHERE cdid = "
+ record->value("id").toString());
query.exec ("DELETE FROM cd WHERE id = "
+ record->value("id").toString());
cdTable->refresh();
trackTable->refresh();

}

When the user clicks Delete, we remove all the tracks for the current CD from
the track table and then the current CD from the cd table. Then we update
both tables.

void MainForm::currentCdChanged(QSglRecord *record)
{
trackTable->setFilter("cdid = "
+ record->value("id").toString());
trackTable->refresh();

}

The currentCdChanged() slot is connected to the cdTable’s currentChanged()
signal, which is emitted when the user modifies the current CD or when the
user makes another CD current. Whenever the current CD changes, we call
setFilter() on the track table and refresh it to make it display the tracks
related to the current CD, and we call refresh () to force the table to repopulate
itself with the relevant data.

This is all the code that is needed to implement MainForm. One possible im-
provement would be to show the duration of each track split into minutes and
seconds (for example, “02:35”) rather than just as seconds (“155”). We could
accomplish this by subclassing 9SqlCursor and reimplementing the calculate-
Field() function to transform the duration field into a QString with the desired
format:

QVariant TrackSqglCursor::calculateField(const QString &name)
{
if (name == "duration") {
int duration = value("duration").toInt();
return QString("%1:%2").arg(duration / 60, 2)
.arg(duration % 60, 2);
}
return QVariant();

}

We would also need to call setCalculated("duration", true) on the cursor to
tell gpataTable to use the value returned by calculaterield() for the duration
field, instead of simply using value().

Creating Data-Aware Forms 275

Creating Data-Aware Forms

Qt takes an innovative approach to database interaction with forms. Instead
of having a separate database-enabled version of every built-in widget, Qt is
able to make any widget data-aware, using QSqlForm and QSqlPropertyMap to
relate database fields to widgets. Any built-in or custom widget can be made
data-aware using these classes.

QSqlFormis a QObject subclass that makes it easy to create forms to browse or
edit individual records in a database. The common pattern of usage is this:

1. Create the editor widgets (QLineEdi ts, QComboBoxes, QSpinBoxes, etc.) for the
record’s fields.

. Create a 0sglcursor and move it to the record to edit.
. Create a QSqlForm object.
. Tell the 9sglForm which editor widget is bound to which database field.

o~ W DN

. Call the QSqlForm::readFields() function to populate the editor widgets
with the data from the current record.

6. Show the dialog.

7. Call the gsqlForm::writeFields() function to copy the updated values
back into the database.

To illustrate this, we will look at the code for the cdrorm dialog. This dialog
allows the user to create or edit a CD record. The user can specify the CD’s
title, artist, and release year, and the title and duration of each track.

Title: | Bulhead
Artist: | Melvins x| add pew.. |
Year: |1991 3:
Track | Duration | Move Up |
1 Bariz al4
| tave Down |
2 Anaconda 143
3 Ligature 229
O 5 shoved I
5 Zodiac 254
[If | Haed &1 Ewarcism 187
7 Wour Blessed 33
g Cow 271

Update I Cancel |

Figure 12.4. The CdForm dialog

Let’s start with the class definition:

class CdForm : public QDialog
{

276 12. Databases

Q_OBJECT

public:
CdForm(QWidget *parent = 0, const char *name = 0);
CdForm(int id, QWidget *parent = 0, const char *name = 0);
~CdForm() ;

protected slots:
void accept();
void reject();

private slots:
void addNewArtist();
void moveTrackUp() ;
void moveTrackDown () ;
void beforeInsertTrack(QSglRecord *buffer);
void beforeDeleteTrack (QSglRecord *buffer);

private:
void init();
void createNewRecord();
void swapTracks(int trackA, int trackB);

QLabel *titleLabel;
QLabel *artistLabel;

QDataTable *trackTable;
QSglForm *sqglForm;
QSglCursor *cdCursor;
QSglCursor *trackCursor;
int cdId;

bool newCd;

}i

We have declared two constructors: one for inserting a new CD into the
database, the other for updating an existing CD. The accept () and reject ()
slots are reimplemented from gbialog.

CdForm: : CdForm(QWidget *parent, const char *name)
: QDialog(parent, name)
{
setCaption(tr("Add a CD"));
cdIid = -1;
init();

}

The first constructor sets the dialog’s caption to “Add a CD” and calls the
private init () function to do the rest.

CdForm: :CdForm(int id, QWidget *parent, const char *name)
: QDialog(parent, name)
{
setCaption(tr("Edit a CD"));
cdId = id;
init();

}

The second constructor sets the caption to “Edit a CD” and also calls init ().

Creating Data-Aware Forms 277

void CdForm::init ()
{
db = QSqglDatabase::database("CD");
db->transaction() ;
if (cdIid == -1)
createNewRecord() ;

Ininit(),westart atransaction using the “CD” database connection. We need
to use different connections in CdForm and ArtistForm, because we can have
both forms open at the same time, and we don’t want one form to roll back the
transaction initiated by the other form.

If we have no CD to operate on, we call the private function createNewRecord()
to insert a blank one into the database. This will allow us to use the CD ID as
a foreign key in the tracks’ gdataTable. If the user clicks Cancel, we roll back
the transaction and the blank record will disappear.

For this dialog, we use a different connection to the database than in the
ArtistForm Thisisbecause we can only have one active transaction per connec-
tion, and we can end up in a situation where we need two, for example, if the
user clicks Add New to pop up the ArtistForm

titleLabel = new QLabel (tr("&Title:"), this);
artistLabel = new QLabel (tr("&Artist:"), this);
yearLabel = new QLabel (tr("&Year:"), this);

titleLineEdit = new QLineEdit(this);

yearSpinBox = new QSpinBox(this);
yearSpinBox->setRange (1900, 2100);
yearSpinBox->setValue(QDate::currentDate() .year());
artistComboBox = new ArtistComboBox(db, this);
artistButton = new QPushButton(tr("Add &New..."), this);

cancelButton = new QPushButton(tr("Cancel"), this);

We create the labels, the line edit, the spin box, the combobox, and the buttons
that form the user interface. The combobox is of type ArtistComboBox, which
we will cover later on.

trackCursor = new QSqglCursor("track", true, db);
trackTable = new QDataTable(trackCursor, false, thig);
trackTable->setFilter("cdid = " + QString::number(cdId));
trackTable->setSort (trackCursor->index ("number")) ;
trackTable->addColumn("title", tr("Track"));
trackTable->addColumn ("duration", tr("Duration"));
trackTable->refresh();

We set up the gpataTable that allows the user to browse and edit the tracks
on the current CD. This is very similar to what we did in the previous section
with the ArtistForm class.

cdCursor = new QSglCursor("cd", true, db);
cdCursor->select("id = " + QString::number (cdId));
cdCursor->next () ;

We set up the gsqglcursor associated with the 9sqlForm and make it point to the
record with the correct ID.

278 12. Databases

QSglPropertyMap *propertyMap = new QSglPropertyMap;
propertyMap->insert ("ArtistComboBox", "artistId");
sqlForm = new QSqglForm(this);
sglForm->installPropertyMap (propertyMap) ;
sqlForm->setRecord(cdCursor->primeUpdate()) ;
sglForm->insert(titleLineEdit, "title");
sqlForm->insert (artistComboBox, "artistid");
sglForm->insert (yearSpinBox, "year");
sqlForm->readFields () ;

We create a QSqlPropertyMap. The QSqlPropertyMap class tells QSqlForm which
Qt property holds the value of a certain type of editor widget. By default,
0SqlForm already knows that a QLineEdit stores its value in the text property
and that a QSpinBox stores its value in the value property. But it doesn’t know
anything about custom widgets such as ArtistComboBox. By inserting the pair
(“ArtistComboBox”, “artistId”) in the property map and by calling install-
PropertyMap () on the QSqlForm, we tell QSqlFormto use the artist1d property for
widgets of type ArtistComboBox.

The QsqlForm object also needs a buffer to operate on, which we obtain by
calling primeUpdate() on the QSglcCursor, and it needs to know which editor
widget corresponds to which database field. At the end, we call readrields()
to read the data from the database into the editor widgets.

connect (artistButton, SIGNAL(clicked()),
this, SLOT(addNewArtist()));
connect (moveUpButton, SIGNAL(clicked()),
this, SLOT(moveTrackUp()));
connect (moveDownButton, SIGNAL(clicked()),
this, SLOT(moveTrackDown()));
connect (updateButton, SIGNAL(clicked()),
this, SLOT(accept()));
connect (cancelButton, SIGNAL(clicked()),
this, SLOT(reject()));
connect (trackTable, SIGNAL(beforeInsert(QSglRecord *)),
this, SLOT(beforeInsertTrack(QSglRecord *)));

}

We connect the buttons’ clicked() signals and the QDataTable’s beforeInsert ()
signal to the private slots that are described next.

void CdForm::accept()

{
sqlForm->writeFields();
cdCursor->update() ;
db->commit () ;
QDialog::accept();

}

If the user clicks Update, we write the data into the QSqlcursor’s edit buffer,
we call update() to perform an UPDATE on the database, we call commit() to
really write the record into the database, and we call the base class’s accept ()
implementation to close the form.

Creating Data-Aware Forms 279

void CdForm::reject()
{
db->rollback() ;
QDialog::reject();
}

If the user clicks Cancel, we roll back, leaving the database unchanged, and
close the form.

void CdForm::addNewArtist()
{
ArtistForm form(this);
if (form.exec()) {
artistComboBox->refresh();
updateButton->setEnabled(artistComboBox->count() > 0);

}

If the user clicks Add New, we pop up a modal ArtistForm dialog. The dialog
allows the user to add new artists, and also to edit and delete existing artists.
If the user clicks Update, we call ArtistComboBox::refresh() to ensure that its
list of artists is up to date.

We enable or disable the Update button depending on whether there are
any artists, since we don’t want to allow a new CD to be created without an
artist name.

void CdForm::beforeInsertTrack(QSqglRecord *buffer)

{
buffer->setvalue("id", generateId("track", db));
buffer->setvalue ("number", trackCursor->size() + 1);
buffer->setvalue("cdid", cdId);

}

The beforeInsertTrack() slot is connected to the QDataTable’s beforeInsert ()
signal. We set the record’s id, number, and cdid fields.

void CdForm::beforeDeleteTrack (QSqglRecord *buffer)
{
0SglQuery query(db);
query.exec ("UPDATE track SET number = number - 1 "
"WHERE track.number > "
+ buffer->value("number").toString());

}

The beforeDeleteTrack() slot is connected to the QpataTable’s beforeDelete()
signal. We renumber all the tracks that have a number higher than the track
we delete to ensure that the track numbers remain consecutive. For example,
if the CD contains six tracks and the user deletes track 4, then track 5 becomes
track 4 and track 6 becomes track 5.

There are four functions that we have not covered: moveTrackUp (), moveTrack-
Down (), swapTracks(), and createNewRecord(). These are necessary to make
the application usable, but their implementations do not show any new tech-
niques, so we will not review them here. Their source code is on the CD.

280 12. Databases

Now that we have seen all the forms in the CD Collection application, we
are ready to review the custom ArtistComboBox. As usual, we start with the
class definition:

class ArtistComboBox : public QComboBox
{
Q_OBJECT
Q PROPERTY(int artistId READ artistId WRITE setArtistId)
public:
ArtistComboBox (QSglDatabase *database, QWidget *parent = 0,
const char *name = 0);

void refresh();
int artistId() const;
void setArtistId(int id);

private:
void populate();

QSglDatabase *db;

QMap<int, int> idFromIndex;

QMap<int, int> indexFromId;
}i

The artistComboBox class inherits QComboBox and adds an artistId property and
a few functions.

In the private section, we declare a QMap<int, int> that associates artist IDs
with combobox indexes and a QMap<int, int> that associates combobox indexes
with artist IDs.

ArtistComboBox: :ArtistComboBox (QSglDatabase *database,
QWidget *parent, const char *name)
: QComboBox (parent, name)

db = database;
populate() ;
}

In the constructor, we call the private function populate() to fill the combobox
with the names and IDs in the artist table.

void ArtistComboBox::refresh()

{
int oldArtistId = artistId();
clear();
idFromIndex.clear();
indexFromId.clear();
populate();
setArtistId(oldArtistId);

}

In the refresh() function, we repopulate the combobox with the latest data
from the database. We are also careful to ensure that the artist who was
selected before the refresh is still selected afterward, unless that artist has
have been deleted from the database.

Creating Data-Aware Forms 281

void ArtistComboBox: :populate()

{
QSglCursor cursor("artist", true, db);
cursor.select (cursor.index("name")) ;

int index = 0;

while (cursor.next()) {
int id = cursor.value("id").toInt();
insertItem(cursor.value("name").toString(), index);
idFromIndex[index] = id;
indexFromId[id] = index;
++index;

}

In the private function populate(), we iterate through all the artists and call
QComboBox: :insertItem() to add them to the combobox. We also update the
idFromIndex and the indexFromId maps.

int ArtistComboBox::artistId() const
{
return idFromIndex[currentItem()];

}
The artistId() function returns the ID for the current artist.

void ArtistComboBox::setArtistId(int id)
{
if (indexFromId.contains(id))
setCurrentItem(indexFromId[id]);

}
The setArtistId() function sets the current artist based on an artist ID.

In applications that often need comboboxes that show foreign keys, it would
probably be worthwhile creating a generic DatabaseComboBox class whose
constructor would allow us to specify the table name, the field to display, and
the field to use for IDs.

Let’s finish the CD Collection application by implementing its createConnec-
tions () and main() functions.

inline bool createOneConnection(const QString &name)
{
QSglDatabase *db;
if (name.isEmpty())
db = QSglDatabase::addDatabase("QSQLITEX") ;
else
db = QSglDatabase::addDatabase("QSQLITEX", name);
db->setDatabaseName ("cdcollection.dat");
if (!db->open()) {
db->lastError().showMessage() ;
return false;
}

return true;

282 12. Databases

inline bool createConnections()
{
return createOneConnection("")
&& createOneConnection("ARTIST")
&& createOneConnection("CD");

}

In createConnections (), we create three identical connections to the CD data-
base. We don’t give any name to the first one; it is used by default when we
don’t specify a database. The other ones are called “ARTIST” and “CD”; they
are used by ArtistForm and CdForm.

int main(int argc, char *argv[])
{
QApplication app(argc, argv);
if (!createConnections())
return 1;

MainForm mainForm;
app.setMainWidget (&mainForm) ;
mainForm.resize (480, 320);
mainForm. show() ;

return app.exec();

}

The main() function is the same as most other Qt main() functions, except for
the addition of a createConnections() call.

As we mentioned at the end of the previous section, one possible improvement
would be to display the duration of each track as minutes and seconds rather
than just seconds. Besides reimplementing QSqlCursor::calculateField(),
this would also involve subclassing QSqlEditorFactory to provide a custom
editor (which we could base on QTimeEdit) and using a QSqlPropertyMap to tell
QDataTable how to get the value back from the editor. See the documentation
for QpataTable’s installEditorFactory() and installPropertyMap() functions
for more information.

Another improvement would be to store an image of each CD’s cover in the
database and to show it in the cdForm. To implement this, we could store the
image data as a BLOB in the database, retrieve it as a QByteArray, and pass the
QByteArray to the QImage constructor.

Using QFtp

e Using QHttp

TCP Networking with
QSocket

UDP Networking with
QSocketDevice

Networking

Qt provides the Qrtp and QHt tp classes for working with FTP and HTTP. These
protocols are easy to use for downloading and uploading files and, in the case
of HTTP, for sending requests to web servers and retrieving the results.

Qt’s oFtp and QHttp classes are built on the lower-level gsocket class, which
provides a TCP socket. TCP operates in terms of data streams transmitted be-
tween network nodes. QSocket isin turn implemented on top of QSocketDevice,
a thin wrapper around the platform-specific network APIs. The gSocketDevice
class supports both TCP and UDP.

In this chapter, we will learn how to use the four classes mentioned above and
other closely related classes, like QServerSocket and QSocketNotifier. We will
also cover uploading and downloading files and how to use a web form pro-
grammatically. We will use TCP in a server application and in a corresponding
client application. Similarly, we will use UDP in a sender application and in a
corresponding receiver application. The coverage of oFtp and QHttp should be
accessible to anyone, but the coverage of Qsocket and especially QSocketDevice
does assume some networking experience.

Using QFtp

The @Ftp class implements the client side of the FTP protocol in Qt. It pro-
vides various functions to perform the most common FTP operations, includ-
ing get (), put (), remove(), and mkdir (), and provides a means of executing ar-
bitrary FTP commands.

The QrFtp class works asynchronously. When we call a function like get ()
or put(), it returns immediately and the data transfer occurs when control
passes back to Qt’s event loop. This ensures that the user interface remains
responsive while FTP commands are executed.

283

284 13. Networking

We will start with an example that shows how to retrieve a single file using
get (). The example assumes that the application’s MainWindow class needs to
retrieve a price list from an FTP site.

class MainWindow : public QMainWindow
{
Q_OBJECT
public:
MainWindow(QWidget *parent = 0, const char *name = 0);

void getPriceList();

private slots:
void ftpDone(bool error);

private:
QFtp ftp;

QFile file;
Vi

The class has a public function, getPriceList (), that retrieves the price list
file, and a private slot, ftpDone (bool), that is called when the file transfer is
completed. The class also has two private variables: The ftp variable, of type
QFtp, encapsulates the connection to an FTP server; the file variable is used
for writing the downloaded file to disk.

MainWindow: :MainWindow (QWidget *parent, const char *name)
: QMainWindow(parent, name)

{

connect (&ftp, SIGNAL(done(bool)), this, SLOT(ftpDone(bool)));
}

In the constructor, we connect the QFtp object’s done (bool) signal to our ftp-
Done (bool) private slot. QFtp emits the done (bool) signal when it has finished
processing all requests. The bool parameter indicates whether an error oc-
curred or not.

void MainWindow::getPriceList()
{
file.setName("price-list.csv");
if (!file.open(IO_WriteOnly)) {
QMessageBox::warning(this, tr("Sales Pro"),
tr("Cannot write file %1\n%2.")
.arg(file.name())
.arg(file.errorString()));
return;

ftp.connectToHost ("ftp.trolltech.com");
ftp.login();

ftp.cd("/topsecret/csv");
ftp.get("price-list.csv", &file);
ftp.close();

Using QFtp 285

The getpriceList() function downloads the ftp://ftp.trolltech.com/top-
secret/csv/price-list.csv file and saves it as price-list.csv in the current
directory.

We start by opening the gFile for writing. Then we execute a sequence of five
FTP commands using our QFtp object. The second argument to get () specifies
the output I/O device.

The FTP commands are queued and executed in Qt’s event loop. The comple-
tion of the commands is indicated by QFtp’s done(bool) signal, which we con-
nected to ftpDone (bool) in the constructor.

void MainWindow: :ftpDone(bool error)
{
if (error)
QMessageBox::warning (this, tr("Sales Pro"),
tr("Error while retrieving file with "
"FTP: %1.")
.arg(ftp.errorString()));
file.close();

}

Once the FTP commands are executed, we close the file. If an error occurred,
we display it in a QMessageBox.

QFtp provides these operations: connectToHost (), login(), close(), list (), cd(),
get (), put(), remove(), mkdir(), rmdir(), and rename(). All of these functions
schedule an FTP command and return an ID number that identifies the
command. Arbitrary FTP commands can be executed using rawCommand (). For
example, here’s how to execute a SITE CHMOD command:

ftp.rawCommand ("SITE CHMOD 755 fortune");

QFtp emits the commandStarted(int) signal when it starts executing a com-
mand, and it emits the commandFinished(int, bool) signal when the command
is finished. The int parameter is the ID number that identifies a command.
If we are interested in the fate of individual commands, we can store the ID
numbers when we schedule the commands. Keeping track of the ID numbers
allows us to provide detailed feedback to the user. For example:

void MainWindow::getPriceList ()

{

connectId = ftp.connectToHost ("ftp.trolltech.com");
loginId = ftp.login();
cdId = ftp.cd("/topsecret/csv");
getId = ftp.get("price-list.csv", &file);
closeId = ftp.close();
}

void MainWindow::commandStarted(int id)
{
if (id == connectId) {
statusBar()->message(tr("Connecting..."));

286 13. Networking

} else if (id == loginId) {
statusBar()->message(tr("Logging in..."));

}

Another way of providing feedback is to connect to QFtp’s stateChanged()
signal.

In most applications, we are only interested in the fate of the whole sequence
of commands. We can then simply connect to the done (bool) signal, which is
emitted whenever the command queue becomes empty.

When an error occurs, QFtp automatically clears the command queue. This
means that if the connection or the login fails, the commands that follow in the
queue are never executed. But if we schedule new commands after the error
has occurred using the same QFtp object, these commands will be queued and
executed as if nothing had happened.

We will now review a more advanced example:

class Downloader : public QObject

{
Q_OBJECT
public:
Downloader (const QUrl &url);

signals:
void finished();

private slots:
void ftpDone(bool error);
void listInfo(const QUrlInfo &urlInfo);

private:
QFtp ftp;
std::vector<QFile *> openedFiles;

Vi

The Downloader class downloads all the files located in an FTP directory. The
directory is specified as a Qur1 passed to the class’s constructor. The qQurl class
is a Qt class that provides a high-level interface for extracting the different
parts of a URL, such as the file name, path, protocol, and port.

Downloader: :Downloader (const QUrl &url)
{
if (url.protocol() != "ftp") {
QMessageBox::warning (0, tr("Downloader"),
tr("Protocol must be ’'ftp’."));
emit finished();
return;

}

int port = 21;
if (url.hasPort())
port = url.port();

Using QFtp 287

connect (&ftp, SIGNAL (done(bool)),
this, SLOT (ftpDone(bool)));

connect (&ftp, SIGNAL(listInfo(const QUrlInfo &)),
this, SLOT(listInfo(const QUrliInfo &)));

ftp.connectToHost (url.host (), port);

ftp.login(url.user(), url.password());
ftp.cd(url.path());
ftp.list();

}

In the constructor, we first check that the URL starts with “ftp:”. Then we
extract a port number. If no port is specified, we use port 21, the default port
for FTP.

Next, we establish two signal-slot connections, and we schedule four FTP
commands. The last FTP command, 1ist (), retrieves the name of every file
in the directory and emits a 1istInfo(const QUrlInfo &) signal for each name
that it retrieves. This signal is connected to a slot also called 1istInfo (), which
downloads the file associated with the URL it is given.

void Downloader::listInfo(const QUrlInfo &urlInfo)
{
if (urlInfo.isFile() && urlInfo.isReadable()) {
QFile *file = new QFile(urlInfo.name());
if (!file->open(IO_WriteOnly)) {
QMessageBox::warning (0, tr("Downloader"),
tr("Error: Cannot open file "
"%1:\n%2.")
.arg(file->name())
.arg(file->errorString()));
emit finished();
return;

}

ftp.get(urlIinfo.name(), file);
openedFiles.push_back(file);

}

The 1istInfo() slot’s QUrlinfo parameter provides detailed information about
a remote file. If the file is a normal file (not a directory) and is readable, we
call get () to download it. The QFile object used for downloading is allocated
using new and a pointer to it is stored in the openedFiles vector.

void Downloader::ftpDone(bool error)
{
if (error)
QMessageBox::warning (0, tr("Downloader"),
tr("Error: %1.")
.arg(ftp.errorString()));

for (int i = 0; i < (int)openedFiles.size(); ++i)
delete openedFiles[i];
emit finished();

288 13. Networking

The ftpDone() slot is called when all the FTP commands have finished, or if
an error occurred. We delete the QFile objects to prevent memory leaks, and
also to close each file. (The Qrile destructor automatically closes the file if
it’s open.)

If there are no errors, the sequence of FTP commands and signals is as
follows:

connectToHost (host)
login()
cd(path)
list()
emit listInfo(file 1)
get(file_ 1)
emit listInfo(file 2)
get(file_ 2)

emit listInfo(file_N)
get(file_N)
emit done()

If a network error occurs while downloading the fifth of, say, twenty files to
download, the remaining files will not be downloaded. If we wanted to down-
load as many files as possible, one solution would be to schedule the GET oper-
ations one at a time and to wait for the done (bool) signal before scheduling a
new GET operation. In listInfo(), we would simply append the file name to a
QStringList, instead of calling get () right away, and in done(bool) we would
call get () on the next file to download in the QStringList. The sequence of ex-
ecution would then look like this:

connectToHost (host)
login()
cd(path)
list()
emit listInfo(file_ 1)
emit listInfo(file_ 2)

emit listInfo(file_N)
emit done()

get(file_1)
emit done()

get(file_2)
emit done()
get(file_N)
emit done()

Another solution would be to use one QFtp object per file. This would enable
us to download the files in parallel, through separate FTP connections.

int main(int argc, char *argv([])
{
QApplication app(argc, argv);

Using QFtp 289

QUrl url("ftp://ftp.example.com/");
if (argc >= 2)
url = argv([1l];
Downloader downloader(url);
QObject: :connect (&downloader, SIGNAL(finished()),
&app, SLOT(quit()));
return app.exec();

}

The main() function completes the program. If the user specifies a URL on the
command line, we use it; otherwise, we fall back on ftp://ftp.example.com/.

In both examples, the data retrieved using get () was written to a QFile. This
doesn’t have to be the case. If we wanted the data in memory, we could use a
QBuffer, the QI0Device subclass that wraps a QByteArray. For example:

QBuffer *buffer = new QBuffer(byteArray);
buffer->open(I0_WriteOnly) ;
ftp.get(urlInfo.name(), buffer);

We could also omit the I/O device argument to get (), or pass a null pointer. The
QFtp class then emits a readyRead() signal every time new data is available,
and the data can be read using readBlock() or readall ().

If we want to provide the user with feedback while the data is being down-
loaded, we can connect QFtp’s dataTransferProgress(int, int) signal to the
setProgress (int, int) slotin a QProgressBar or in a QProgressDialog. We would
then also connect the QProgressBar or QProgressDialog’s canceled() signal to
QFtp’s abort () slot.

Using QHttp

The guttp class implements the client side of the HTTP protocol in Qt. It
provides various functions to perform the most common HTTP operations,
including get () and post (), and provides a means of sending arbitrary HTTP
requests. If you have read the previous section about QFtp, you will find that
there are many similarities between QFtp and QHttp.

The oHttp class works asynchronously. When we call a function like get () or
post (), the function returns immediately, and the data transfer occurs later,
when control returns to Qt’s event loop. This ensures that the application’s
user interface remains responsive while HTTP requests are being processed.

We will review an example that shows how to download an HTML file from
Trolltech’s web site from a Qt application’s MainWindow class. We will omit the
header file because it is very similar to the one we used in the previous section
(p. 284), with a private slot (httpDone (bool)) and private variables (http of type
QHttp and file of type QFile).

MainWindow: :MainWindow (QWidget *parent, const char *name)
: QMainWindow(parent, name)

{

290 13. Networking

connect (&http, SIGNAL(done(bool)), this, SLOT(httpDone(bool)));
}

In the constructor, we connect the QHttp object’s done(bool) signal to the
MainWindow’s httpDone (bool) slot.

void MainWindow::getFile()
{
file.setName("aboutgt.html");
if (!file.open(IO_WriteOnly)) {
QMessageBox: :warning (this, tr("HTTP Get"),
tr("Cannot write file %1\n%2.")
.arg(file.name())
.arg(file.errorString()));
return;

}

http.setHost ("doc.trolltech.com");
http.get("/3.2/aboutgt.html", &file);
http.closeConnection() ;

}

The getFile() function downloads the http://doc.trolltech.com/3.2/aboutqt.
html file and saves it as aboutgt.html in the current directory.

We open the qrile for writing and schedule a sequence of three HTTP
requests using our QHttp object. The second argument to get () specifies the
output I/O device.

The HTTP requests are queued and executed in Qt’s event loop. The comple-
tion of the commands is indicated by QHttp’s done (bool) signal, which we con-
nected to httpDone (bool) in the constructor.

void MainWindow: :httpDone (bool error)
{
if (error)
QMessageBox: :warning (this, tr("HTTP Get"),
tr("Error while fetching file with "
"HTTP: %1.")
.arg(http.errorString()));
file.closel();

}

Once the HTTP requests are finished, we close the file. If an error occurred,
we display the error message in a QMessageBox.

Quttp provides the following operations: setHost (), get (), post (), and head().
For example, here’s how we would use post () to send a list of “name = value”
pairs to a CGI script:

http.setHost ("www.example.com") ;
http.post("/cgi/somescript.py", QCString("x=200&y=320"), &file);

For more control, we can use the request () function, which accepts an arbi-
trary HTTP header and data. For example:

Using QHttp 291

QHttpRequestHeader header ("POST", "/search.html");
header.setValue("Host", "www.trolltech.com");
header.setContentType ("application/x-www-form-urlencoded") ;
http.setHost ("www. trolltech.com");

http.request (header, QCString("gt-interest=on&search=opengl"));

QHttp emits the requestStarted(int) signal when it starts executing a request,
and it emits the requestFinished(int, bool) signal when the request has
finished. The int parameter is an ID number that identifies a request. If we
are interested in the fate of individual requests, we can store the ID numbers
when we schedule the requests. Keeping track of the ID numbers allows us to
provide detailed feedback to the user.

In most applications, we only want to know whether the entire sequence of
requests completed successfully or not. This is easily achieved by connecting
to the done(bool) signal, which is emitted when the request queue becomes
empty.

When an error occurs, the request queue is automatically cleared. But if
we schedule new requests after the error has occurred using the same QHttp
object, these requests will be queued and sent as usual.

Like QFtp, QHttp provides a readyRead() signal as well as the readBlock() and
readAll () functions that we can use instead of specifying an I/O device. It also
provides a dataTransferProgress (int, int) signal that can be connected to a
QProgressBar Or to a QProgressDialog’s setProgress (int, int) slot.

TCP Networking with QSocket

The gsocket class can be used to implement TCP clients and servers. TCP is
a transport protocol that forms the basis of many application-level Internet
protocols, including FTP and HTTP, and that can also be used for custom pro-
tocols.

TCP is a stream-oriented protocol. For applications, the data appears to be a
long stream, rather like a large flat file. The high-level protocols built on top
of TCP are typically either line-oriented or block-oriented:

¢ Line-oriented protocols transfer data as lines of text, each terminated by
a newline.

¢ Block-oriented protocols transfer data as binary data blocks. Each block
consists of a size field followed by size bytes of data.

QSocket inherits from QIODevice, so it can be read from and written to using a
QDataStreamor a QTextStream One notable difference when reading data from a
network compared with reading from a file is that we must make sure that we
have received enough data from the peer before we use the >> operator. Failing
to do so may result in undefined behavior.

In this section, we will review the code of a client and a server that use a cus-
tom block-oriented protocol. The client is called Trip Planner and allows users

292 13. Networking

to plan their next train trip. The server is called Trip Server and provides the
trip information to the client. We will start by writing the Trip Planner appli-

cation.
M Trip Planner EJE‘

Trip Information

From: Stuttgart -
Stop

To: Frankfurt am Main v =k
Date: 11/24/2004 3
Approximate Time 10:00 =
(%) Departure O Amival

Date Departure Amival Duration Changes = Train type

11/24/2004 10:00 10:05 0hr 5 min 1 InterCity

11/24/2004 10:00 10:47 0 hr 47 min 1 InterCity

11/24/2004 10:00 1107 1hr 7 min 1 InterCity

11/24/2004 10:00 11:45 1hr 45 min 1 InterCity

11/24/2004 10:00 1218 2hr 19 min 1 InterCity

Found 5 tripfs) [] | Quit

Figure 13.1. The Trip Planner application

The Trip Planner provides a From field, a To field, a Date field, an Approximate
Time field, and two radio buttons to select whether the approximate time is
that of departure or arrival. When the user clicks Search, the application
sends a request to the server, which responds with a list of train trips that
match the user’s criteria. The list is shown in a QListview in the Trip Planner
window. The very bottom of the window is occupied by a QLabel that shows the
status of the last operation and a QprogressBar.

The Trip Planner’s user interface was created using Q¢ Designer. Here, we will
focus on the source code in the corresponding . ui.h file. Note that the following
four variables were declared in @¢ Designer’s Members tab:

QSocket socket;

QTimer connectionTimer;
QTimer progressBarTimer;
Q_UINT16 blockSize;

The socket variable of type gSocket encapsulates the TCP connection. The
connectionTimer variable is used to time out a connection that lasts too long.
The progressBarTimer variable is used to refresh the progress bar periodically
when the application is busy. Finally, the blocksize variable is used when
parsing the blocks received from the server.

void TripPlanner::init()
{
connect (&socket, SIGNAL(connected()),
this, SLOT(sendRequest()));
connect (&socket, SIGNAL(connectionClosed()),
this, SLOT(connectionClosedByServer()));
connect (&socket, SIGNAL(readyRead()),
this, SLOT(updateListView()));

TCP Networking with @Socket 293

connect (&socket, SIGNAL(error(int)),
this, SLOT(error(int)));

connect (&connectionTimer, SIGNAL(timeout()),
this, SLOT(connectionTimeout()));

connect (&progressBarTimer, SIGNAL (timeout()),
this, SLOT(advanceProgressBar()));

QDateTime dateTime = QDateTime::currentDateTime() ;
dateEdit->setDate(dateTime.date());
timeEdit->setTime (QTime (dateTime. time().hour(), 0));

}

In init(), we connect the QSocket’s connected(), connectionClosed(), ready-
Read(), and error(int) signals, and the two timers’ timeout () signals, to our
own slots. We also fill the Date and Approximate Time fields with default values
based on the current date and time.

void TripPlanner::advanceProgressBar ()

{

progressBar->setProgress (progressBar->progress() + 2);

}

The advanceProgressBar () slot is connected to the progressBarTimer’s timeout ()
signal. We advance the progressbar by two units. In Q¢ Designer,the progress
bar’s totalSteps property was set to 0, a special value meaning that the bar
should behave as a busy indicator.

void TripPlanner::connectToServer ()
{
listView->clear();

socket.connectToHost ("tripserver.zugbahn.de", 6178);

searchButton->setEnabled(false);
stopButton->setEnabled(true);
statusLabel->setText (tr("Connecting to server..."));

connectionTimer.start (30 * 1000, true);
progressBarTimer.start (200, false);

blockSize = 0;
}

The connectToserver () slot is executed when the user clicks Search to start a
search. We call connectToHost () on the QSocket object to connect to the server,
which we assume is accessible at port 6178 on the fictitious host tripserver.
zugbahn.de. (If you want to try the example on your own machine, replace
the host name with localhost.) The connectToHost () call is asynchronous; it
always returns immediately. The connection is typically established later.
The QSocket object emits the connected () signal when the connection is up and
running, or error (int) (with an error code) if the connection failed.

Next, we update the user interface and start the two timers. The first timer,
connectionTimer,is a single-shot timer that gets triggered when the connection
has been idle for 30 seconds. The second timer, progressBarTimer, times out

294 13. Networking

every 200 milliseconds to update the application’s progress bar, giving a visual
cue to the user that the application is working.

Finally, we set the blockSize variable to 0. The blockSize variable stores the
length of the next block received from the server. We have chosen to use the
value of 0 to mean that we don’t yet know the size of the next block.

void TripPlanner::sendRequest ()
{
QOByteArray block;
QDataStream out(block, IO_WriteOnly);
out.setVersion(5);
out << (Q_UINT16)0 << (Q_UINTS8)'’S’
<< fromComboBox->currentText ()
<< toComboBox->currentText () << dateEdit->date()
<< timeEdit->time();
if (departureRadioButton->isOn())
out << (Q_UINTS8)'D’;
else
out << (Q_UINTS8)'A’;
out.device()->at(0);
out << (Q_UINTI16) (block.size() - sizeof (Q_UINT16));
socket.writeBlock(block.data(), block.size());

statusLabel->setText (tr("Sending request..."));
}

The sendrRequest () slot is executed when the QSocket object emits the con-
nected() signal, indicating that a connection has been established. The slot’s
task is to generate a request to the server, with all the information entered by
the user.

The request is a binary block with the following format:

Q_UINT16 | Block size in bytes (excluding this field)
Q_UINTS Request type (always ‘S’)

QString Departure city

QString | Arrival city

QDate Date of travel

QTime Approximate time of travel

Q_UINTS Time is for departure (‘D’) or arrival (‘A’)

We first write the data to a 0ByteArray called block. We can’t write the data
directly to the gsocket because we don’t know the size of the block, which must
be sent first, until after we have put all the data into the block.

We initially write 0 as the block size, followed by the rest of the data. Then
we call at (0) on the I/O device (a QBuffer created by gbDataStream behind the
scenes) to move back to the beginning of the byte array, and overwrite the
initial 0 with the size of the block’s data. The size is calculated by taking the
block’s size and subtracting sizeof (Q_UINT16) (that is, 2) to exclude the size

TCP Networking with @Socket 295

field from the byte count. After that, we call writeBlock() on the QSocket to
send the block to the server.

void TripPlanner::updateListView()

{

connectionTimer.start (30 * 1000, true);

QDataStream in(&socket);
in.setVersion(5);

for (;;) f
if (blockSize == 0) {
if (socket.bytesAvailable() < sizeof (Q_UINT16))
break;
in >> blockSize;

}

1f (blockSize == 0xFFFF) {
closeConnection() ;
statusLabel->setText (tr("Found %1 trip(s)")
.arg(listView->childCount()));
break;

}

if (socket.bytesAvailable() < blockSize)
break;

QDate date;

QTime departureTime;
QTime arrivalTime;

Q UINT16 duration;
Q_UINT8 changes;
QString trainType;

in >> date >> departureTime >> duration >> changes
>> trainType;
arrivalTime = departureTime.addSecs(duration * 60);

new QListViewItem(listView,
date.toString(LocalDate),
departureTime. toString (tr("hh:mm")),
arrivalTime.toString(tr("hh:mm")),
tr("%1l hr %2 min").arg(duration / 60)

.arg(duration % 60),

QString: :number (changes),
trainType) ;

blockSize = 0;

}

The updateListview() slot is connected to the QSocket’s readyRead() signal,
which is emitted whenever the gsocket has received new data from the server.
The first thing we do is to restart the single-shot connection timer. Whenever
we receive some data from the server, we know that the connection is alive, so
we set the timer running for another 30 seconds.

296 13. Networking

The server sends us a list of possible train trips that match the user’s criteria.
Each matching trip is sent as a single block, and each block starts with a size.
What complicates the code in the for loop is that we don’t necessarily get one
block of data from the server at a time. We might have received an entire
block, or just part of a block, or one and a half blocks, or even all of the blocks
at once.

51 bytes 48 bytes 53 bytes
| 51| data ||| 48|| cata || ---|| 53| data || ||OXFFFF]|

Figure 13.2. The Trip Server’s blocks

So how does the for loop work? If the blockSize variable is 0, this means
that we have not read the size of the next block. We try to read it (assuming
there are at least 2 bytes available for reading). The server uses a size value
of OxFFFF to signify that there is no more data to receive, so if we read this
value, we know that we have reached the end.

If the block size is not OxFFFF, we try to read in the next block. First, we check
to see if there are block size bytes available to read. If there are not, we stop
there for now. The readyRead() signal will be emitted again when more data
is available, and we will try again then.

Once we are sure that an entire block has arrived, we can safely use the >>
operator on the QDataStream we set up on the Qsocket to extract the information
related to a trip, and we create a QListViewItem with that information. A block
received from the server has the following format:

Q_UINT16 | Block size in bytes (excluding this field)

QDate Departure date

QTime Departure time

Q_UINT16 | Duration (in minutes)

Q_UINTS Number of changes

QString Train type

At the end, we reset the blockSize variable to 0 to indicate that the next block’s
size is unknown and needs to be read.

void TripPlanner::closeConnection()

{
socket.close();
searchButton->setEnabled(true);
stopButton->setEnabled(false);
connectionTimer.stop();
progressBarTimer.stop() ;
progressBar->setProgress (0) ;

TCP Networking with @Socket 297

The closeConnection() private function closes the connection to the TCP serv-
er, updates the user interface, and stops the timers. It is called from update-
ListView() when the OxFFFF is read and from several other slots that we will
cover shortly.

void TripPlanner::stopSearch()

{
statusLabel->setText (tr("Search stopped"));
closeConnection();

}

The stopSearch() slot is connected to the Stop button’s clicked() signal.
Essentially it just calls closeConnection().

void TripPlanner::connectionTimeout ()

{
statusLabel->setText (tr("Error: Connection timed out"));
closeConnection();

}

The connectionTimeout () slot is connected to the connectionTimer’s timeout ()
signal.

void TripPlanner::connectionClosedByServer()
{
if (blockSize != O0xFFFF)
statusLabel->setText (tr("Error: Connection closed by "
"server"));
closeConnection() ;

}

The connectionClosedByServer() slot is connected to socket’s connection-
Closed() signal. If the server closes the connection and we have not yet re-
ceived the OxFFFF end-of-stream marker, we tell the user that an error oc-
curred. We call closeConnection () asusual to update the user interface and to
stop the timers.

void TripPlanner::error(int code)
{
QString message;

switch (code) {
case QSocket::ErrConnectionRefused:
message = tr("Error: Connection refused");
break;
case QSocket::ErrHostNotFound:
message = tr("Error: Server not found");
break;
case QSocket::ErrSocketRead:
default:
message = tr("Error: Data transfer failed");
}
statusLabel->setText (message) ;
closeConnection() ;

298 13. Networking

The error (int) slot is connected to socket’s error (int) signal. We produce an
error message based on the error code.

The main() function for the Trip Planner application looks just as we would
expect:

int main(int argc, char *argv[])

{
QApplication app(argc, argv);
TripPlanner tripPlanner;
app.setMainWidget (&tripPlanner) ;
tripPlanner.show() ;
return app.exec();

}

Now let’s implement the server. The server consists of two classes: TripServer
and ClientSocket. The TripServer class inherits QServerSocket, a class that
allows us to accept incoming TCP connections. ClientSocket reimplements
QSocket and handles a single connection. At any one time, there are as many
ClientSocket objects in memory as there are clients being served.

class TripServer : public QServerSocket
{
public:
TripServer (QObject *parent = 0, const char *name = 0);

void newConnection(int socket);

}i

The TripServer class reimplements the newConnection() function from gserv-
erSocket. This function is called whenever a client attempts to connect to the
port the server is listening to.

TripServer::TripServer (QObject *parent, const char *name)
: QServerSocket (6178, 1, parent, name)

{

}

In the TripServer constructor, we pass the port number (6178) to the base class
constructor. The second argument, 1, is the number of pending connections
we want to allow.

void TripServer::newConnection(int socketId)

{
ClientSocket *socket = new ClientSocket(this);
socket->setSocket (socketId) ;

}

In newConnection(), we create a ClientSocket object as a child of the TripServer
object, and we set its socket ID to the number provided to us.

class ClientSocket : public QSocket
{
Q_OBJECT
public:
ClientSocket (QObject *parent = 0, const char *name = 0);

TCP Networking with @Socket 299

private slots:
void readClient();

private:
void generateRandomTrip(const QString &from, const QString &to,
const QDate &date, const QTime &time);

Q_UINT16 blockSize;
}i

The clientSocket class inherits from QSocket and encapsulates the state of a
single client.

ClientSocket::ClientSocket (QObject *parent, const char *name)
: QSocket (parent, name)
{
connect (this, SIGNAL(readyRead()),
this, SLOT(readClient()));
connect (this, SIGNAL(connectionClosed()),
this, SLOT(deleteLater()));
connect (this, SIGNAL(delayedCloseFinished()),
this, SLOT(deleteLater()));

blockSize = 0;
}

In the constructor, we establish the necessary signal—slot connections, and we
set the blocksSize variable to 0, indicating that we do not yet know the size of
the block sent by the client.

The connectionClosed() and delayedCloseFinished() signals are connected
to deletelLater(), a QObject-inherited function that deletes the object when
control returns to Qt’s event loop. This ensures that the clientSocket object
is deleted when the connection is closed by the peer or when a delayed close is
finished. We will see what that means in a moment.

void ClientSocket::readClient ()
{
QDataStream in(this);
in.setVersion(5);

if (blockSize == 0) {
if (bytesAvailable() < sizeof (Q_UINT16)
return;

in >> blockSize;

if (bytesAvailable() < blockSize)
return;

Q_UINT8 requestType;
QString from;
QString to;

QDate date;

QTime time;

Q_UINT8 flag;

in >> requestType;

300 13. Networking

if (requestType == 'S’) {
in >> from >> to >> date >> time >> flag;

srand(time.hour() * 60 + time.minute());

int numTrips = rand() % 8;

for (int i = 0; 1 < numTrips; ++i)
generateRandomTrip(from, to, date, time);

QDataStream out (this);
out << (Q_UINT16) 0xFFFF;
}

close();
if (state() == Idle)
deleteLater();

}

The readClient () slotis connected to QSocket’s readyRead () signal. If blockSize
is 0, we start by reading the blocksize; otherwise, we have already read it, and
instead we check to see if a whole block has arrived. Once an entire block is
ready for reading, we read it. We use the QDataStream directly on the gsocket
(the this object) and read the fields using the >> operator.

Once we have read the client’s request, we are ready to generate a reply. If this
were a real application, we would look up the information in a train schedule
database and try to find matching train trips. But here we will be content with
a function called generaterRandomTrip() that will generate a random trip. We
call the function a random number of times, and we send OxFFFF to signify
the end of the data.

Finally, we close the connection. If the socket’s output buffer is empty, the
connection is terminated immediately and we call deleteLater() to delete this
object when control returns to Qt’s event loop. (Thisis safer than delete this.)
Otherwise, QSocket will complete sending out all the data, and will then close
the connection and emit the delayedCloseFinished() signal.

void ClientSocket::generateRandomTrip(const QString &,
const QString &, const QDate &date, const QTime &time)
{
QByteArray block;
QDataStream out(block, IO_WriteOnly);
out.setVersion(5);
Q _UINT16 duration = rand() % 200;
out << (Q_UINT16)0 << date << time << duration
<< (Q_UINT8)1 << QString("InterCity");
out.device()->at(0);
out << (Q_UINT16) (block.size() - sizeof (Q_UINT16));

writeBlock(block.data(), block.size());
}

The generateRandomTrip() function shows how to send a block of data over
a TCP connection. This is very similar to what we did in the client in the
sendRequest () function (p. 294). Once again, we write the block to a QByteArray
so that we can determine its size before we send it using writeBlock().

TCP Networking with @Socket 301

int main(int argc, char *argv([])
{
QApplication app(argc, argv);
TripServer server;

if (!server.ok()) {
gWarning ("Failed to bind to port");
return 1;

}

QPushButton quitButton(QObject::tr("&Quit"), 0);

quitButton.setCaption(QObject::tr("Trip Server"));

app.setMainWidget (&quitButton) ;

QObject::connect (&quitButton, SIGNAL(clicked()),
&app, SLOT(quit()));

quitButton.show();

return app.exec();

}

In main(), we create a TripServer object and a QPushButton that enables the
user to stop the server.

This completes our client—server example. In this case, we used a block-ori-
ented protocol that allows us to use QbataStream for reading and writing. If
we wanted to use a line-oriented protocol, the simplest approach would be to
use QSocket’s canReadLine() and readLine() functionsin a slot connected to the
readyRead () signal

QStringList lines;
while (socket.canReadLine())
lines.append(socket.readLine());

We would then process each line that has been read. As for sending data, that
can be done using a QTextStream on the QSocket.

The server implementation that we have used doesn’t scale very well when
there are lots of connections. The problem is that while we are processing
a request, we don’t handle the other connections. A more scalable approach
would be to start a new thread for each connection. But QSocket can only
be used in the thread that contains the event loop (the call to QApplication::
exec()), for reasons that are explained in Chapter 17 (Multithreading). The
solution is to use the low-level QSocketDevice class directly, which doesn’t rely
on the event loop.

UDP Networking with QSocketDevice

The gsocketDevice class provides a low-level interface that can be used for TCP
and for UDP. For most TCP applications, the higher-level gsocket class is all
we need, but if we want to use UDP, we must use QSocketDevice directly.

UDP is an unreliable, datagram-oriented protocol. Some application-level
protocols use UDP because it is more lightweight than TCP. With UDP, data is
sent as packets (datagrams) from one host to another. There is no concept of

302 13. Networking

connection, and if a UDP packet doesn’t get delivered successfully, no error is
reported to the system.

B Weather Station E|

Date: Maon Oct 20 2003

Time: 18:56:42
Temperature: |-18.9367 °C
Humidity: 2075575

Altitude: 7000.89m

Figure 13.3. The Weather Station application

We will see how to use UDP from a Qt application through the Weather Bal-
loon and Weather Station example. The Weather Balloon application is a non-
GUI application that sends a UDP datagram containing the current atmo-
spheric conditions every 5 seconds. The Weather Station application receives
these datagrams and displays them on screen. We will start by reviewing the
code for the Weather Balloon.

class WeatherBalloon : public QPushButton
{
Q_OBJECT
public:
WeatherBalloon (QWidget *parent = 0, const char *name = 0);

double temperature() const;
double humidity() const;
double altitude() const;

protected:
void timerEvent (QTimerEvent *event);

private:
QSocketDevice socketDevice;
int myTimerId;

}i

The WeatherBalloon class inherits from QPushButton. It uses its QSocketDevice
private variable for communicating with the Weather Station.

WeatherBalloon: :WeatherBalloon (QWidget *parent, const char *name)
: QPushButton(tr("Quit"), parent, name),
socketDevice(QSocketDevice: :Datagram)

socketDevice.setBlocking(false);
myTimerId = startTimer(5 * 1000);

UDP Networking with @SocketDevice 303

In the constructor’s initialization list, we pass QSocketDevice: :Datagran to the
QSocketDevice constructor to create a UDP socket device. In the constructor
body, we call setBlocking (false) to make the QSocketDevice asynchronous. (By
default, gsocketDevice is synchronous.)

We call startTimer () to generate a timer event every 5 seconds.

void WeatherBalloon::timerEvent (QTimerEvent *event)
{
if (event->timerId() == myTimerId) {
QByteArray datagram;
QDataStream out (datagram, IO_WriteOnly);
out.setVersion(5);
out << QDateTime::currentDateTime() << temperature()
<< humidity() << altitude();
socketDevice.writeBlock (datagram, datagram.size(),
0x7F000001, 5824);
} else {
QPushButton::timerEvent (event) ;
}
}

In the timer event handler, we generate a datagram containing the current
date, time, temperature, humidity, and altitude:

QDateTime | Date and time of measurement
double Temperature (in °C)

double Humidity (in %)

double Altitude (in meters)

The datagram is sent using writeBlock (). The third and fourth arguments to
writeBlock() are the IP address and the port number of the peer (the Weather
Station). For this example, we assume that the Weather Station is running
on the same machine as the Weather Balloon, so we use an IP address of
127.0.0.1 (0x7F000001), a special address that designates the local host.
Unlike QSocket, QSocketDevice does not accept host names, only host numbers.
If we wanted to resolve a host name to its IP address here, we would need to

use the obns class.
As usual, we need a main() function:

int main(int argc, char *argv[])
{
QApplication app(argc, argv);
WeatherBalloon balloon;
balloon.setCaption(QObject::tr("Weather Balloon"));
app.setMainWidget (&balloon) ;
QObject::connect (&balloon, SIGNAL(clicked()),
&app, SLOT(quit()));
balloon.show() ;
return app.exec();

304 13. Networking

The main() function simply creates a wWeatherBalloon object, which serves both
as a UDP peer and as a QpushButton on screen. By clicking the gpushButton, the
user can quit the application.

Now let’s review the source code for the Weather Station.

class WeatherStation : public QDialog
{
Q_OBJECT
public:
WeatherStation(QWidget *parent = 0, const char *name = 0);

private slots:
void dataReceived();

private:
QSocketDevice socketDevice;
QSocketNotifier *socketNotifier;

QLabel *dateLabel;
QLabel *timeLabel;

QLineEdit *altitudeLineEdit;
}i

The weatherStation class inherits from QDialog. It listens to a certain UDP
port, parses any incoming datagrams (from the Weather Balloon), and displays
their contents in five read-only QLineEdits.

The class has two private variables of interest here: socketDevice and socket-
Notifier. The socketDevice variable, of type QSocketDevice, is used for reading
datagrams. The socketNotifier variable, of type QSocketNotifier, is used to
make the application aware of incoming datagrams.

WeatherStation::WeatherStation(QWidget *parent, const char *name)
: QDialog(parent, name),
socketDevice(QSocketDevice: :Datagram)

socketDevice.setBlocking(false);
socketDevice.bind (QHostAddress (), 5824);

socketNotifier = new QSocketNotifier(socketDevice.socket(),
QSocketNotifier: :Read,
this);
connect (socketNotifier, SIGNAL(activated(int)),
this, SLOT(dataReceived()));

}

In the constructor’s initialization list, we pass QSocketDevice: :Datagram to the
QSocketDevice constructor to create a UDP socket device. In the constructor
body, we call setBlocking(false) to make the socket asynchronous and we call
bind() to assign a port number to the socket. The first argument is the IP
address of the Weather Station. By passing QHostAddress (), we indicate that
we will accept datagrams to any IP address that belongs to the machine the
Weather Station is running on. The second argument is the port number.

UDP Networking with @SocketDevice 305

Then we create a QSocketNotifier object to monitor the socket. The QSocket-
Notifier will emit an activated(int) signal whenever the socket receives a
datagram. We connect that signal to our dataReceived() slot.

void WeatherStation::dataReceived()
{

QDateTime dateTime;

double temperature;

double humidity;

double altitude;

QByteArray datagram(socketDevice.bytesAvailable());
socketDevice.readBlock(datagram.data(), datagram.size());

QDataStream in(datagram, IO_ReadOnly);
in.setVersion(5);
in >> dateTime >> temperature >> humidity >> altitude;

dateLineEdit->setText (dateTime.date().toString());
timeLineEdit->setText (dateTime.time().toString());
temperatureLineEdit->setText (tr("%1l °C").arg(temperature));
humidityLineEdit->setText (tr("%1%").arg(humidity));
altitudeLineEdit->setText(tr("%1 m").arg(altitude));

}

In dataReceived(),we call readBlock () on the QSocketDevice toread in the data-
gram. QByteArray::data() returns a pointer to the QByteArray’s data, which
readBlock() populates. Then, we extract the different fields using a gpata-
Stream, and we update the user interface to show the information we received.
From the application’s point of view, datagrams are always sent and received
as a single unit of data. This means that if any bytes are available, then ex-
actly one datagram has arrived and can be read.

int main(int argc, char *argv[])
{
QApplication app(argc, argv);
WeatherStation station;
app.setMainWidget (&station);
station.show();
return app.exec();

}

Finally, in main(), we create a WeatherStation and make it the application’s
main widget.

We have now finished our UDP sender and receiver. The applications are
as simple as possible, with the Weather Balloon sending datagrams and the
Weather Station receiving them. In most real-world applications, both appli-
cations would need to both read and write on their socket. The QSocketDevice
class has a peerAddress() and a peerPort () function that can be used by the
server to determine what address and port to reply to.

* Reading XML with SAX
* Reading XML with DOM
o Writing XML

14

XML

XML (Extensible Markup Language) is a text file format that is popular for
data interchange and for data storage.

Qt provides two distinct APIs for processing XML documents:

¢ SAX (Simple API for XML) reports parsing events directly to the applica-
tion through virtual functions.

¢ DOM (Document Object Model) converts an XML document into a tree
structure, which the application can then navigate.

There are many factors to take into account when choosing between DOM and
SAX for a particular application. SAX is more low-level and usually faster,
which makes it especially appropriate both for simple tasks (like finding all
occurrences of a given tag in an XML document) and for reading very large
files that may not fit in memory. But for many applications, the convenience
offered by DOM outweighs the potential speed and memory benefits of SAX.

In this chapter, we will see how to read XML files using both APIs, and we
will show how to write XML files. This chapter assumes a basic knowledge
of XML.

Reading XML with SAX

SAX is a public domain de-facto standard Java API for reading XML docu-
ments. Qt’s SAX classes are modeled after the SAX2 Java implementation,
with some differences in naming to match the Qt conventions. For more infor-
mation about SAX, see http://www.saxproject.org/.

Qt provides a SAX-based non-validating XML parser called QxmlSimpleReader.
This parser recognizes well-formed XML and supports XML namespaces.
When the parser goes through the document, it calls virtual functions in

307

308 14. XML

registered handler classes to indicate parsing events. (These “parsing events”
are unrelated to Qt events, such as key and mouse events.) For example, let’s
assume the parser is analyzing the following XML document:

<doc>
<quote>Errare humanum est</quote>
</doc>

The parser would call the following parsing event handlers:

startDocument ()

startElement ("doc")
startElement ("quote")
characters("Errare humanum est"
endElement ("quote")

endElement ("doc")

endDocument ()

The above functions are all declared in QxmlContentHandler. For simplicity, we
omitted some of the arguments of startElement () and endElement ().

QXmlContentHandler is just one of many handler classes that can be used in
conjunction with QxmlSimpleReader. The others are QxmlEntityResolver, QXml-
DTDHandler,QXmlErrorHandler,QXmlDeclHandler,and.QXmlLexicalHandlerﬂThese
classes only declare pure virtual functions and give information about differ-
ent kinds of parsing events. For most applications, 0Xm1ContentHandler and
QXmlErrorHandler are the only two that are needed.

For convenience, Qt also provides QxmlDefaultHandler, a class that inherits
(through multiple inheritance) from all the handler classes and that provides
trivial implementations for all the functions. This design, with many abstract
handler classes and one trivial subclass, is rather unusual for Qt; it was
adopted to closely follow the model Java implementation.

We will now review an example that shows how to use QxmlSimpleReader and
QXmlDefaultHandler to parse an ad-hoc XML file format and render its contents
in a QListView. The QmlDefaultHandler subclass is called saxHandler, and the
format it handles is that of a book index, with index entries and subentries.

QXmlContentHandler QXmIDTDHandler QXmlLexicalHandler

QXmlErrorHandler | QXmIEntityResolver | QXmIDeclHandler
l ‘ l |
QXmlDefaultHandler
\

SaxHandler

Figure 14.1. Inheritance tree for SaxHandler

Here’s the book index file that is displayed in the QListView in Figure 14.2:

<?xml version="1.0"?>
<bookindex>

Reading XML with SAX 309

<entry term="sidebearings">
<page>10</page>
<page>34-35</page>
<page>307-308</page>
</entry>
<entry term="subtraction">
<entry term="of pictures">
<page>115</page>
<page>244</page>
</entry>
<entry term="of vectors">
<page>9</page>
</entry>
</entry>
</bookindex>

Terms Pages
i sidehearings 10, 34-35, 307-303
—|- subtraction
b Of pictures 115, 244
o of wectors q

Figure 14.2. A book index file loaded in a QListView

The first step to implement the parser is to subclass QXmlDefaultHandler:

class SaxHandler : public QXmlDefaultHandler
{
public:

SaxHandler (QListView *view) ;

bool startElement(const QString &namespaceURI,
const QString &localName,
const QString &gName,
const QXmlAttributes &attribs);
bool endElement(const QString &namespaceURI,
const QString &localName,
const QString &gName) ;
bool characters(const QString &str);
bool fatalError(const QXmlParseException &exception);

private:
QListView *listView;
QListViewItem *currentItem;
QString currentText;

}i

The saxHandler class inherits QXmlDefaultHandler and reimplements four
functions: startElement (), endElement (), characters(), and fatalError(). The
first three functions are declared in QxmlContentHandler; the last function is
declared in QxmlErrorHandler

310 14. XML

SaxHandler: :SaxHandler (QListView *view)

{
listView = view;
currentItem = 0;

}

The saxHandler constructor accepts the QListview we want to fill with the
information stored in the XML file.

bool SaxHandler::startElement(const QString &, const QString &,
const QString &gName,
const QXmlAttributes &attribs)

if (gName == "entry") {
if (currentItem) {
currentItem = new QListViewItem(currentItem);
} else {
currentItem = new QListViewItem(listView);
}
currentItem->setOpen(true);
currentItem->setText (0, attribs.value("term"));
} else if (gName == "page") {
currentText = "";

}
return true;

}

The startElement () function is called when the reader encounters a new open-
ing tag. The third parameter is the tag’s name (or more precisely, its “qualified
name”). The fourth parameter is the list of attributes. In this example, we
ignore the first and second parameters. They are useful for XML files that
use XML'’s namespace mechanism, a subject that is discussed in detail in the
reference documentation.

If the tag is <entry>, we create a new QListViewitem. If the tag is nested with-
in another <entry> tag, the new tag defines a subentry in the index, and the
new QListViewItem is created as a child of the QListViewItem that represents
the encompassing entry. Otherwise, we create the QListViewItemwith listview
as its parent, making it a top-level item. We call setOpen(true) on the item to
show its children, and we call setText () to set the text shown in column 0 to
the value of the <entry> tag’s term attribute.

If the tag is <page>, we set the currentText to be an empty string. The cur-
rentText serves as an accumulator for the text located between the <page> and
</page> tags.

At the end, we return true to tell SAX to continue parsing the file. If we want-
ed to report unknown tags as errors, we would return false in those cases. We
would then also reimplement errorString () from QXmlDefaultHandler to return
an appropriate error message.

bool SaxHandler::characters(const QString &str)

{

currentText += str;

Reading XML with SAX 311

return true;

}

The characters() function is called to report character data in the XML
document. We simply append the characters to the currentText variable.

bool SaxHandler::endElement (const QString &, const QString &,
const QString &gName)
{

if (gName == "entry") {
currentItem = currentItem—->parent();
} else if (gName == "page") {

if (currentItem) {
QString allPages = currentItem->text(1);
if (lallPages.isEmpty())
allPages += ", ";
allPages += currentText;
currentItem->setText (1, allPages);
}
}
return true;

}

The endElement () function is called when the reader encounters a closing tag.
Just as with startElement (), the third parameter is the name of the tag.

If the tag is </entry>, we update the currentItem private variable to point
to the current QListViewItem’s parent. This ensures that the currentitem
variable is restored to the value it held before the corresponding <entry> tag
was read.

If the tag is </page>, we add the specified page number or page range to the
comma-separated list in the current item’s text in column 1.

bool SaxHandler::fatalError(const QXmlParseException &exception)
{
gWarning ("Line %d, column %d: %s", exception.lineNumber (),
exception.columnNumber (), exception.message().ascii());
return false;

}

The fatalError() functionis called when the reader fails to parse the XML file.
If this occurs, we simply output a warning, giving the line number, the column
number, and the parser’s error text.

This completes the implementation of the SaxHandler class. Now let’s see how
we can make use of the class:

bool parseFile(const QString &fileName)

{
QListView *listView = new QListView(0);
listView->setCaption(QObject::tr("SAX Handler"));
listView->setRootIsDecorated(true);
listView->setResizeMode (QListView: :AllColumns) ;
listView->addColumn (QObject::tr("Terms")) ;
listView->addColumn (QObject::tr("Pages"));

312 14. XML

listView->show() ;

QFile file(fileName);
QXmlSimpleReader reader;

SaxHandler handler(listView);
reader.setContentHandler (&handler) ;
reader.setErrorHandler (&handler) ;
return reader.parse(&file);

}

We set up a QListView with two columns. Then we create a QFile object for the
file that is to be read and a QxmlSimpleReader to parse the file. We don’t need
to open the orile ourselves; Qt does that automatically.

Finally, we create a SaxHandler object, we install it on the reader both as a
content handler and as an error handler, and we call parse() on the reader to
perform the parsing.

In saxHandler, we only reimplemented functions from the gxmlContentHandler
and QxmlErrorHandler classes. If we had implemented functions from other
handler classes, we would also have needed to call their corresponding setter
functions on the reader.

Reading XML with DOM

DOM is a standard API for parsing XML developed by the World Wide Web
Consortium (W3C). Qt provides a non-validating DOM Level 2 implementa-
tion for reading, manipulating, and writing XML documents.

DOM represents an XML file as a tree in memory. We can navigate through
the DOM tree as much as we want, and we can modify the tree and save it back
to disk as an XML file.

Let’s consider the following XML document:

<doc>
<quote>Errare humanum est</quote>
<translation>To err is human</translation>
</doc>

It corresponds to the following DOM tree:

Document
Element (doc)

Element (quote)

Text (“Errare humanum est”)
Element (translation)

Text (“To err is human”)

Reading XML with DOM 313

The DOM tree contains nodes of different types. For example, an Element node
corresponds to an opening tag and its matching closing tag. The material that
falls between the tags appears as child nodes of the Element node.

In Qt, the node types (like all other DOM-related classes) have a QDom prefix.
Thus, QDomElement represents an Element node, and QDomText represents a
Text node.

Different types of nodes can have different kinds of child nodes. For example,
an Element node can contain other Element nodes, and also EntityReference,
Text, CDATASection, ProcessingInstruction, and Comment nodes. Figure 14.3
specifies which nodes can have which kinds of child nodes. The nodes shown
in gray cannot have any child nodes of their own.

Document Attr

N S S| I

Document Processing Entity
Element Type Instruction Sl Reference Text
Document Entity ;
Fragment Element Reference Entity
[I | I]
v v v v v v
Entity CDATA Processing
Element Reference e Section Instruction Clomeni

Figure 14.3. Parent—child relationships between DOM nodes

To illustrate how to use DOM for reading XML files, we will write a parser for
the book index file format described in the previous section (p. 308).

class DomParser
{
public:
DomParser (QIODevice *device, QListView *view);

private:
void parseEntry(const QDomElement &element,
QListViewItem *parent);

QListView *listView;
}i
We define a class called DomParser that will parse a book index XML document
and display the result in a QListview. The class does not inherit from any
other class.

DomParser: :DomParser (QIODevice *device, QListView *view)

{

listView = view;

314 14. XML

QString errorStr;
int errorLine;
int errorColumn;
QDomDocument doc;
if (!doc.setContent(device, true, &errorStr, &errorLine,
&errorColumn)) {
gWarning("Line %d, column %d: %s", errorLine, errorColumn,
errorStr.ascii());
return;

}

QDomElement root = doc.documentElement();

if (root.tagName() != "bookindex") {
gWarning ("The file is not a bookindex file");
return;

}

QDomNode node = root.firstChild();

while (!node.isNull()) {
if (node.toElement().tagName() == "entry")
parseEntry(node. toElement (), 0);

node = node.nextSibling();

}

In the constructor, we create a QDomDocument object and call setContent () on it
to have it read the XML document provided by the 910Device. The setContent ()
function automatically opens the device if it isn’t already open. Then we call
documentElement () on the gbomDocument to obtain its single gbomElement child,
and we check that it is a <bookindex> element. Then we iterate over all the
child nodes, and if the node is an <entry> element, we call parseEntry() to
parse it.

The gpomNode class can store any type of node. If we want to process a node
further, we must first convert it to the right data type. In this example, we only
care about Element nodes, so we call toElement () on the QDomNode to convert it
to a QDomElement and then call tagName() to retrieve the element’s tag name.
If the node is not of type Element, the toElement() function returns a null
QDomElement object, with an empty tag name.

void DomParser::parseEntry(const QDomElement &element,
QListViewItem *parent)
{
QListViewItem *item;
if (parent) {
item = new QListViewItem(parent);
} else {
item = new QListViewItem(listView);
}
item->setOpen(true) ;
item->setText (0, element.attribute("term"));

QDomNode node = element.firstChild();
while (!node.isNull()) {
if (node.toElement().tagName() == "entry") {

Reading XML with DOM 315

parseEntry(node. toElement (), item);
} else if (node.toElement().tagName() == "page") {
oDomNode childNode = node.firstChild();
while (!childNode.isNull()) {
if (childNode.nodeType() == QDomNode::TextNode) {
QString page = childNode.toText().datal();
QString allPages = item—->text(1);
if ('allPages.isEmpty())
allPages += 1", ";
allPages += page;
item->setText (1, allPages);
break;
}
childNode = childNode.nextSibling();

}

node = node.nextSibling();

}

In parseEntry(), we create a QListViewitem. If the tag is nested within anoth-
er <entry> tag, the new tag defines a subentry in the index, and we create the
QListViewItem as a child of the QListViewItem that represents the encompass-
ing entry. Otherwise, we create the QListvViewItem with 1istView as its parent,
making it a top-level item. We call setOpen(true) on the item to ensure that
any subentries will be visible, and call setText () to set the text shown in col-
umn 0 to the value of the <entry> tag’s term attribute.

Once we have initialized the QListViewItem, we iterate over the child nodes of
the QDomElement node corresponding to the current <entry> tag.

If the element is <entry>, we call parseEntry() with the current item as the
second argument. The new entry’s QListViewItem will then be created with the
encompassing entry’s QListViewItem as its parent.

If the element is <page>, we navigate through the element’s child list to find a
Text node. Once we have found it, we call toText () to convert it to a QDomText
object, and data() to extract the text as a QString. Then we add the text to the
comma-separated list of page numbers in column 1 of the QListViewItem.

Let’s now see how we can use the DomParser class to parse a file:

void parseFile(const QString &fileName)

{
QListView *1listView = new QListView(0);
listView->setCaption(QObject::tr("DOM Parser"));
listView->setRootIsDecorated(true);
listView->setResizeMode (QListView: :Al1Columns) ;
listView->addColumn (QObject::tr("Terms")) ;
listView->addColumn (QObject::tr("Pages"));
listView->show() ;

QFile file(fileName);
DomParser(&file, listView);

316 14. XML

We start by setting up a QListView. Then we create a QFile and a DomPars-
er. When the DompParser is constructed, it parses the file and populates the
list view.

As the example illustrates, navigating through a DOM tree can be cumber-
some. Simply extracting the text between <page> and </page> required us
to iterate through a list of gDomNodes using firstChild() and nextSibling().
Programmers who use DOM a lot often write their own higher level wrapper
functions to simplify commonly needed operations, such as extracting the text
between tags.

Writing XML

There are basically two approaches for generating XML files from Qt appli-
cations:

e We can build a DOM tree and call save () on it.
* We can generate XML by hand.

The choice between these approaches is often independent of whether we use
SAX or DOM for reading XML documents.

Here’s a code snippet that illustrates how we can create a DOM tree and write
it using a QTextStream:

const int Indent = 4;

QDomDocument doc;

QDomElement root = doc.createElement ("doc");

QDomElement quote = doc.createElement ("quote");

QDomElement translation = doc.createElement ("translation");
QDomText quoteText = doc.createTextNode("Errare humanum est");
QDomText translationText = doc.createTextNode("To err is human");

doc.appendChild(root) ;
root.appendChild(quote) ;
root.appendChild(translation) ;
quote.appendChild(quoteText) ;
translation.appendChild(translationText) ;

QTextStream out(&file);
doc.save(out, Indent);

The second argument to save () is the indentation size to use. A non-zero value
makes the file easier for humans to read. Here’s the XML file output:

<doc>
<quote>Errare humanum est</quote>
<translation>To err is human</translation>
</doc>

Another scenario occurs in applications that use the DOM tree as their prima-
ry data structure. These applications would normally read in XML documents

Writing XML 317

using DOM, then modify the DOM tree in memory, and finally call save() to
convert the tree back to XML.

In the example above, we used UTF-8 as the encoding. We can use another
encoding by prepending

<?xml version="1.0" encoding="IS0-8859-1"?>
to the DOM tree. The following code snippet shows how to do this:

QTextStream out(&file);

QDomNode xmlNode = doc.createProcessingInstruction("xml",
"version=\"1.0\" encoding=\"IS0-8859-1\"");

doc.insertBefore(xmlNode, doc.firstChild());

doc.save(out, Indent);

Generating XML files by hand isn’t much harder than using DOM. We can use
QTextStream and write the strings as we would do with any text file. The most
tricky part is to escape special characters in text and attribute values. We can
do this in a separate function:

QString escapeXml (const QString &str)
{

QString xml = str;

xml.replace("&", "&");
xml.replace("<", "<");
xml.replace(">", ">");
xml.replace("’", "'");
xml.replace("\"", """);

return xml;

}

Here’s an example that makes use of it:

QTextStream out(&file);
out.setEncoding (QTextStream: : UnicodeUTF8) ;
out << "<doc>\n"
<< <quote>" << escapeXml (quoteText) << "</quote>\n"
<< <translation>" << escapeXml (translationText)
<< "</translation>\n"
<< "</doc>\n";

The @t Quarterly article “Generating XML”, available online at http://doc.
trolltech.com/qq/qq05-generating-xml.html, presents a very simple class that
makes it easy to generate XML files. The class takes care of the details such
as special characters, indentation, and encoding issues, leaving us free to
concentrate on the XML we want to generate.

Working with Unicode

* Making Applications
Translation-Aware

* Dynamic Language

Switching

Translating Applications

Internationalization

In this chapter, we will cover how to write Qt applications in languages oth-
er than English and how to translate an existing Qt application to other
languages.

The first section discusses Unicode, Qt’s native character encoding. The
information contained in this section is useful to all Qt developers, since even
an application with an English user interface could one day be run on a Greek
or Japanese user’s machine.

The second section shows how to make applications translation-ready. This
process is so easy that it’s worth doing even if you don’t have plans to offer
translated versions of your software. It then leaves you in a good position
to hire a translator and create a new market for your applications at a lat-
er date.

The third section is aimed at truly international applications and shows how
to make an application change language on the fly.

The last section describes the translation process as a whole. It also shows
how programmers and translators can work together using @¢ Linguist and
Qt’s other translation tools.

Working with Unicode

Unicode is a character encoding standard that supports most of the world’s
writing systems. The original idea behind Unicode is that by using 16 bits
for storing characters instead of 8 bits, it would be possible to encode around
65,000 charactersinstead of only 256. Unicode contains ASCII and ISO 8859-1
(Latin-1) as subsets at the same code positions. For example, the character ‘A’
has value 0x41 in ASCII, Latin-1, and Unicode, and the character ‘3’ has value
0xDF in both Latin-1 and Unicode.

319

320 15. Internationalization

Qt’s Qstring class stores strings as Unicode. Each character in a QStringis a
16-bit gchar rather than an 8-bit char. Here are two ways of setting the first
character of a string to ‘A

str[0]
str[0]

IAI;
QChar (0x41) ;

If the source file is encoded in Latin-1, specifying Latin-1 characters is just
as easy:

str[0] = 'B8";
And if the source file has another encoding, the numeric value works:
str[0] = QChar (0xDF) ;

We can specify any Unicode character by its numeric value. For example,
here’s how to specify the Greek capital letter sigma (') and the euro currency
symbol (‘€"):

str[0] = QChar(0x3A3);
str[0] = QChar(0x20AC);

The numeric values of all the characters supported by Unicode are listed at
http://www.unicode.org/unicode/standard/standard.html. If you rarely need
non-Latin-1 Unicode characters, looking up characters online is sufficient;
but Qt provides more convenient ways of entering Unicode strings in a Qt
program, as we will see later in this section.

Qt 3.2’s text engine supports the following writing systems on all platforms:
Arabic, Chinese, Cyrillic, Greek, Hebrew, Japanese, Korean, Lao, Latin, Thai,
and Vietnamese. It also supports all the Unicode 3.2 scripts that don’t require
any special processing. In addition, the following writing systems are sup-
ported on X11 with Xft and on NT-based versions of Windows: Bengali, De-
vanagari, Gujarati, Gurmukhi, Kannada, Khmer, Syriac, Tamil, Telugu, and
Thaana. Finally, Malayalam and Tibetan are supported on X11, and Divehi is
supported on Windows XP. Assuming that the proper fonts are installed on the
system, Qt can render text using any of these writing systems. And assuming
that the proper input methods are installed, users will be able to enter text
that uses these writing systems in their Qt applications.

Programming with Qchar is slightly different from programming with char.
To obtain the numeric value of a QChar, call unicode() on it. To obtain the
ASCII or Latin-1 value of a Qchar (as a char), call 1atinl (). For non-Latin-1
characters, 1atinl () returns 0.

If we know that all the strings in a program are ASCII or Latin-1, we can use
standard <cctype> functions like isalpha(), isdigit(), and isspace(). These
work because QChars automatically convert into chars (as Latin-1) given the
right context, just as 0Strings automatically convert into const char *. Howev-
er, it is generally better to use gchar’s member functions for performing these
operations, since they will work for any Unicode character. The functions

Working with Unicode 321

QChar provides include isPrint (), isPunct(), isSpace(), isMark(), isLetter(),
isNumber (), isLetterOrNumber (), isDigit(), isSymbol(), lower(), and upper().
For example, here’s one way to test that a character is a digit or an upper-case
letter:

if (ch.isDigit() || ch != ch.lower())

The lower () function returns the lower-case version of the character. If the
lower-case version of the character is different from the character itself, then
the character must be upper-case (or title-case). The code snippet works for
any alphabet that distinguishes between upper- and lower-case, including
Latin, Greek, and Cyrillic.

Once we have a Unicode string, we can use it anywhere in Qt’s API where a
QString is expected. It is then Qt’s responsibility to display it properly and to
convert it to other encodings when talking to the operating system.

Special care is needed when we read and write text files. Text files can use a
variety of encodings, and it’s often impossible to guess a text file’s encoding
from its contents. By default, QTextStream uses the system’s local 8-bit encod-
ing (available as QTextCodec: : codecForLocale()) for both reading and writing.
For American and West European locales, this usually means Latin-1.

If we design our own file format and want to be able to read and write arbi-
trary Unicode characters, we can save the data as Unicode by calling setEncod-
ing (QTextStream: : Unicode) before we start writing to the QTextStream. The data
will then be saved in UTF-16, a format that requires two bytes per character.
The UTF-16 format is very close to the memory representation of a QString,
so reading and writing Unicode strings in UTF-16 can be very fast. However,
there is an inherent overhead when saving pure ASCII data in UTF-16 format,
since it stores two bytes for every character instead of just one.

When reading back the text, QTextStream normally detects Unicode automati-
cally, but for absolute certainty it is best to call setEncoding (QTextStream: : Uni-
code) before reading.

Another encoding that supports the whole of Unicode is UTF-8. Its main ad-
vantage over UTF-16 is that it is a superset of ASCII. Any character in the
range 0x00 to 0x7F is represented as a single byte. Other characters,including
Latin-1 characters above 0x7F, are represented by multi-byte sequences. For
text that is mostly ASCII, UTF-8 takes up about half the space consumed by
UTF-16. To use UTF-8 with QTextStream, call setEncoding (QTextStream: :Uni-
codeUTF8) before reading and writing.

If we always want to read and write Latin-1 regardless of the user’s locale, we
can call setEncoding (QTextStream: :Latinl) on the QTextStream.

Other encodings can be specified by calling setCodec() with an appropriate
QTextCodec. A QTextCodec is an object that converts between Unicode and a giv-
en encoding. QTextCodecs are used in a variety of contexts by Qt. Internally,
they are used to support fonts, input methods, the clipboard, drag and drop,

322 15. Internationalization

and file names. But they are also available to us when we write Qt appli-
cations.

For example, if we want to read in a file with the EUC-KR encoding, we can
write this:

QTextStream in(&file);
QTextCodec *koreanCodec = QTextCodec::codecForName ("EUC-KR");
if (koreanCodec)

in.setCodec (koreanCodec) ;

Some file formats specify their encoding in their header. The header is typi-
cally plain ASCII to ensure that it is read correctly no matter what encoding
is used (assuming that it is a superset of ASCII). The XML file format is an
interesting example of this. XML files are normally encoded as UTF-8 or UTF-
16. The proper way to read them in is to call setEncoding (QTextStream: :Uni-
codeUTF8). If the format is UTF-16, QTextStream will automatically detect this
and adjust itself. The <?xml1?> header of an XML file sometimes contains an
encoding argument, for example:

<?xml version="1.0" encoding="EUC-KR"?>

Since QTextStream doesn’t allow us to change the encoding once it has started
reading, the right way to respect an explicit encoding is to start reading the file
anew, using the correct codec (obtained from QTextCodec: : codecForName ()).

In the case of XML, we can avoid having to handle the encoding ourselves by
using Qt’s XML classes, described in Chapter 14.

Another use of QTextCodecs is to specify the encoding of strings that occur in
the source code. Let’s consider the example of a team of Japanese program-
mers who are writing an application targeted primarily at Japan’s home mar-
ket. These programmers are likely to write their source code in a text editor
that uses an encoding such as EUC-JP or Shift-JIS. Such an editor allows
them to type in Japanese characters seamlessly, so that they can write code
like this:

QPushButton *button = new QPushButton(tr("HEE"), 0);

By default, Qt interprets argumentsto tr () as Latin-1. To change this, call the
QTextCodec: :setCodecForTr () static function. For example:

QTextCodec *japaneseCodec = QTextCodec::codecForName ("EUC-JP");
QTextCodec: :setCodecForTr (japaneseCodec) ;

This must be done before the first call to tr(). Typically, we would do this in
main(), right after the QApplication object is created.

Other strings specified in the program will still be interpreted as Latin-1
strings. If the programmers want to enter Japanese characters in those as
well, they can explicitly convert them to Unicode using a QTextCodec:

QString text = japaneseCodec->toUnicode ("JBEEERE") ;

Working with Unicode 323

Alternatively, they can tell Qt to use a specific codec when converting between
const char * and QString by calling QTextCodec: : setCodecForCStrings ():

QTextCodec: :setCodecForCStrings (japaneseCodec) ;

Because Qt’s internals sometimes convert ASCII strings to QString, the
encoding must be a superset of ASCII.

The techniques described above can be applied to any non-Latin-1 language,
including Chinese, Greek, Korean, and Russian.

Here’s a list of the encodings supported by Qt 3.2:

¢ Apple Roman ¢ CP1258 ISO 8859-4 ¢ ISO 8859-15
* Big5-HKSCS EUC-JP * ISO 8859-5 * ISO 10646

» CP874 EUC-KR » ISO 8859-6 UCS-2
e CP1250 * (GB2312 e I1SO8859-7 ¢ JIS7

e CP1251 e GB18030 e ISO8859-8 ¢ KOI8-R
e CP1252 * GBK » ISO8859-8-1 * KOI8-U
e CP1253 e IBM-850 e ISO8859-9 * Shift-JIS
* CP1254 » IBM-866 e 1SO8859-10 * TIS-620
* CP1255 e ISO8859-1 « ISO8859-11 * TSCII

e CP1256 e 1SO8859-2 e« ISO8859-13 °* UTF-8
e CP1257 e ISO8859-3 ISO8859-14

For all of these, QTextCodec: : codecForName () will always return a valid pointer.
Other encodings can be supported either by subclassing QTextCodec or by
creating a charmap file and using QTextCodec::1loadCharmapFile(). See the
QTextCodec reference documentation for details.

Making Applications Translation-Aware

If we want to make our applications available in multiple languages, we must
do two things:

* Make sure that every user-visible string goes through tr().

¢ Load a translation (. gm) file at startup.

Neither of these is necessary for applications that will never be translated.
However, using tr() requires almost no effort and leaves the door open for
doing translations at a later date.

The tr() function is a static function defined in Q0bject and overridden in
every subclass defined with the 9_0BJECT macro. When writing code inside a
Q0bject subclass, we can call tr() without formality. A call to tr() returns a
translation if one is available; otherwise, the original text is returned.

To prepare translation files, we must run Qt’s 1update tool. This tool extracts
all the string literals that appear in tr() calls and produces translation files

324 15. Internationalization

that contain all of these strings ready to be translated. The files can then be
sent to a translator to have the translations added. This process is explained
in the “Translating Applications” section later in this chapter.

A tr() call has the following general syntax:
Context::tr(sourceText, comment)

The context part is the name of a Qobject subclass defined with the Q_0BJECT
macro. We don’t need to specify it if we call tr() from a member function of
the class in question. The sourceText part is the string literal that needs to be
translated. The comment part is optional; it can be used to provide additional
information to the translator.

Here are a few examples:

BlueWidget::BlueWidget (QWidget *parent, const char *name)
: QWidget (parent, name)

{
QString strl
QString str2
QString str3
QString str4

tr("Legal");

BlueWidget::tr("Legal");
YellowDialog::tr("Legal");
YellowDialog::tr("Legal", "US paper size");

}

The first two calls to tr () have “BlueWidget” as context, and the last two calls
have “YellowDialog”. All four have “Legal” as source text. The last call also has
a comment to help the translator understand the meaning of the source text.

Strings in different contexts (classes) are translated independently of each
other. Translators normally work on one context at a time, often with the
application running and showing the widget or dialog being translated.

When we call tr () from a global function, we must specify the context explicit-
ly. Any Qobject subclassin the application can be used as the context. If none
is appropriate, we can always use Q0bject itself. For example:

int main(int argc, char *argv[])
{
QApplication app(argc, argv);

QPushButton button(QObject::tr("Hello Qt!"), 0);
app.setMainWidget (&button) ;

button.show() ;

return app.exec();

}

This idiom is useful for translating the name of the application. Instead of
typing it multiple times and leaving the translator to translate it for each
class it appears in, it is usually more convenient to define an APPNAME macro
that expands to the translated application name and to put the macro in a
header file included by all the application’s files:

#define APPNAME MainWindow::tr("OpenDrawer 2D")

Making Applications Translation-Aware 325

In every example so far, the context has been a class name. Thisis convenient,
because we can almost always omit it, but this doesn’t have to be the case. The
most general way of translating a string in Qt is to use the QaApplication::
translate() function, which accepts up to three arguments: the context, the
source text, and the optional comment. For example, here’s another way to
define APPNAME:

#define APPNAME gApp->translate("Global Stuff", "OpenDrawer 2D")

This time, we put the text in the “Global Stuff” context.

The tr() and translate() functions serve a dual purpose: They are markers
that lupdate uses to find user-visible strings, and at the same time they are
C++ functions that translate text. This has an impact on how we write code.
For example, the following will not work:

// WRONG
const char *appName = "OpenDrawer 2D";
QString translated = tr(appName);

The problem here is that 1update will not be able to extract the “OpenDraw-
er 2D” string literal, as it doesn’t appear inside a tr() call. This means that
the translator will not have the opportunity to translate the string. Thisissue
often arises in conjunction with dynamic strings:

// WRONG
statusBar()->message(tr("Host " + hostName + " found"));

Here, the string we pass to tr() varies depending on the value of hostName, so
we can’t reasonably expect tr () to translate it correctly.

The solution is to use QString::arg():
statusBar()->message(tr("Host %1 found").arg(hostName));

Notice how it works: The string literal “Host %1 found” is passed to tr().
Assuming a French translation file is loaded, tr() would return something
like “Héte %1 trouvé”. Then the “%1” parameter is replaced with the contents
of the hostName variable.

Although it is generally inadvisable to call tr () on a variable, it can be made
to work. We must use the QT_TR_NOOP () macro to mark the string literals for
translation before we assign them to a variable. This is mostly useful for static
arrays of strings. For example:

void OrderForm::init ()
{
static const char * const flowers[] = {
QT_TR_NOOP ("Medium Stem Pink Roses"),

QT_TR_NOOP ("One Dozen Boxed Roses"),
QT_TR_NOOP ("Calypso Orchid"),

QT_TR_NOOP ("Dried Red Rose Bouquet"),
QT_TR_NOOP ("Mixed Peonies Bouquet"),

0

326 15. Internationalization

int 1 = 0;

while (flowers[i]) {
comboBox->insertItem(tr(flowers[i]));
++1;

}

The oT_TR_N00P () simply returnsits argument. But 1update will extract all the
strings wrapped in QT_TR_NOOP (), so that they can be translated. When using
the variable later on, we call tr() to perform the translation as usual. Even
though we have passed tr () a variable, the translation will still work.

There is also a QT_TRANSLATE_NOOP () macro, which works like QT_TR_NO0OP () but
also takes a context. This macro is useful when initializing variables outside
of a class:

static const char * const flowers[] = {
QT_TRANSLATE_NOOP ("OrderForm", "Medium Stem Pink Roses"),
QT_TRANSLATE_NOOP ("OrderForm", "One Dozen Boxed Roses"),
QT_TRANSLATE_NOOP ("OrderForm", "Calypso Orchid"),
QT _TRANSLATE_NOOP ("OrderForm", "Dried Red Rose Bouquet"),
(

QT_TRANSLATE_NOOP
0

"OrderForm", "Mixed Peonies Bouquet"),

}i

The context argument must be the same as the context given to tr() or
translate() later on.

When we start using tr() in an application, it’s easy to forget to surround
some user-visible strings with a tr() call, especially when we first start doing
it. These missing tr() calls are eventually discovered by the translator or,
worse, by users of the translated application, when some strings appear in
the original language. To avoid this problem, we can tell Qt to forbid implicit
conversions from const char * to QString. We do this by defining the QT _no_
CAST_ASCII preprocessor symbol before including <gstring.h>. The easiest way
to ensure this symbol is set is to add the following line to the application’s
.pro file:

DEFINES += QT_NO_CAST_ASCII

This will force every string literal to need to be wrapped by tr() or QString::
fromaAscii(), depending on whether it should be translated or not. Strings
that are not suitably wrapped will produce a compile-time error, thereby
compelling us to add the missing tr () or QString::fromaAscii() call.

Once we have wrapped every user-visible string by a tr () call, the only thing
left to do to enable translation is to load a translation file. Typically, we would
do this in the application’s main () function. For example, here’s how we would
try to load a translation file depending on the user’s locale:

int main(int argc, char *argv[])
{
QApplication app(argc, argv);

Making Applications Translation-Aware 327

QTranslator appTranslator;

appTranslator.load(QString("app_") + QTextCodec::locale(),
gApp->applicationDirPath());

app.installTranslator (&appTranslator);

return app.exec();

}

The QTextCodec: :1ocale() function returns a string that specifies the user’s lo-
cale. Locales can be more or less precise; for example, fr specifies a French-lan-
guage locale, fr_ca specifies a French Canadian locale, and fr_CA.1508859-15
specifies a French Canadian locale with ISO 8859-15 encoding (an encoding
that supports ‘€', ‘@, ‘ee’, and Y’).

Assuming that the locale is fr_Ca.1508859-15, 1load() first attempts to load the
file app_fr_CA.1508859-15.qgm. If this file does not exist, 1oad () next tries app_fr_
CA.qgm, then app_fr.qn, and finally app. qm before giving up. Normally, we would
only provide app_fr.qm, containing a standard French translation, but if we
need a different file for French-speaking Canada, we can also provide app_fr_
cA.gm and it will be used for fr_ca locales.

The second argument to 1oad() is the directory where we want 1oad() to look
for the translation file. In this case, we assume that the translation files are
located in the same directory as the executable.

The Qt library itself contains a few strings that need to be translated. Troll-
tech provides French and German translations in Qt’s translations directory.
(A few other languages are provided as well, but these are contributed by Qt
users and are not officially supported.) The Qt library’s translation file should
also be loaded:

QTranslator gtTranslator;

gtTranslator.load(QString("qgt_") + QTextCodec::locale(),
gApp->applicationDirPath());

app.installTranslator (>Translator) ;

A QTranslator object can only hold one translation file at a time, so we use a
separate QTranslator for Qt’s translation. Having just one file per translator
is not a problem since we can install as many translators as we need. QAppli-
cation will use all of them when searching for a translation.

Some languages, such as Arabic and Hebrew, are written right-to-left instead
of left-to-right. In those languages, the whole layout of the application must
be reversed, which is done by calling QApplication::setReverseLayout (true).
The translation files for the Qt library contain a special marker called “LTR”
that tells Qt whether the language is left-to-right or right-to-left, so we
normally don’t need to worry about it.

It may prove more convenient for our users if we supply our applications with
the translation files embedded into the executable. Not only does this reduce
the number of files distributed as part of the product, but it also avoids the
risk of translation files getting lost or deleted by accident. Qt provides the

328 15. Internationalization

gembed tool (located in Qt’s tools directory), which can convert . gnfiles to a C++
array that can be passed to QTranslator::1load().

We have now covered all that is required to make an application able to oper-
ate using translations into other languages. But language and the direction
of the writing system are not the only things that vary between countries and
cultures. An internationalized program must also take into account the local
date and time formats, monetary formats, numeric formats, and string col-
lation order. Qt 3.2 provides no specific functions for accessing these, but we
can use the standard C++ setlocale() and localeconv() functions to query the
program’s current locale.*

Some Qt classes and functions adapt their behavior to the locale:

® (String::localeAwareCompare() compares two strings in a locale-depen-
dent manner. It is used by classes like QIconview and QListView for sort-
ing items.

® The toString() function provided by QDate, QTime, and QDateTime returns a
string in a local format when called with Qt: :LocalDate as argument.

¢ By default, gpateEdit, QTimeEdit, and QDateTimeEdit present dates in the
local format.

Finally, a translated application may need to use different icons in certain
situations rather than the original icons. For example, the left and right
arrows on a web browser’s Back and Forward buttons should be swapped when
dealing with a right-to-left language. We can do this as follows:

if (QApplication::reverseLayout()) {
backAct->setIconSet (forwardIcon) ;
forwardAct->setIconSet (backIcon);

} else {
backAct->setIconSet (backIcon) ;
forwardAct->setIconSet (forwardIcon);

}

Icons that contain alphabetic characters very commonly need to be translated.
For example, the letter T’ on a toolbar button associated with a word proces-
sor’s ltalic option should be replaced by a ‘C’ in Spanish (Cursivo) and by a ‘K’ in
Danish, Dutch, German, Norwegian, and Swedish (Kursiv). Here’s a quick way
to do it:

if (tr("Italic")[0] == 'C") {
italicAct->setIconSet(iconC);

} else if (tr("Italic")[0] == 'K') {
italicAct->setIconSet (iconkK) ;

} else {
italicAct->setIconSet (iconI);

}

*Qt 3.3 will probably include a QLocale class that will provide localized numeric formats.

Dynamic Language Switching 329

Dynamic Language Switching

For most applications, detecting the user’s preferred language in main() and
loading the appropriate . qm files there is perfectly satisfactory. But there are
some situations where users might need the ability to switch language dynam-
ically. An application that is used continuously by different people in shifts
may need to change language without having to be restarted. For example,
applications used by call center operators, by simultaneous translators, and by
computerized cash register operators often require this capability.

Making an application able to switch language dynamically requires a little
more work than loading a single translation at startup, but it is not difficult.
Here’s what must be done:

* Provide a means by which the user can switch language.

¢ For every widget or dialog, set all of its translatable strings in a separate
function (often called retranslateStrings()) and call this function when
the language changes.

Let’s review the relevant parts of a Call Center application’s source code. The
application provides a Language menu to allow the user to set the language at
run-time. The default language is English.

[Language
duell 1
g" Deutsch
IT 2 English
4 Frangais
Tan 5
6 BAFE

Figure 15.1. The Call Center application’s Language menu

Since we don’t know which language the user will want to use when the appli-
cationis started, we no longer load translationsin the main () function. Instead
we will load them dynamically when they are needed, so all the code that we
need to handle translations must go in the main window and dialog classes.

Let’s have a look at the Call Center application’s gMainWindow subclass:

MainWindow: :MainWindow (QWidget *parent, const char *name)
: QMainWindow(parent, name)

{
journalView = new JournalView(this);
setCentralWidget (journalView) ;

gmPath = gApp->applicationDirPath() + "/translations";

330 15. Internationalization

appTranslator = new QTranslator(this);
gtTranslator = new QTranslator(this);

gApp->installTranslator (appTranslator);
gApp->installTranslator(gtTranslator) ;

createActions () ;
createMenus () ;

retranslateStrings();

}

In the constructor, we set the central widget to be a Journalview, a QListView
subclass. Then we set up a few private member variables related to trans-
lation:

* The gmpath variable is a QString that specifies the path of the directory
that contains the application’s translation files.

® The appTranslator variable is a pointer to the QTranslator object used for
storing the current application translation.

® The gtTranslator variable is a pointer to the QTranslator object used for
storing Qt’s translation.

At the end, we call the createActions() and createMenus () private functions
to create the menu system, and we call retranslateStrings(), also a private
function, to set the user-visible strings for the first time.

void MainWindow::createActions()
{
newAct = new QAction(this);
connect (newAct, SIGNAL(activated()), this, SLOT(newFile()));

aboutQtAct = new QAction(this);
connect (aboutQtAct, SIGNAL(activated()), gApp, SLOT(aboutQt()));
}

The createActions () function creates the Qaction objects as usual, but without
setting any of the texts or accelerator keys. These will be donein retranslate-
Strings().

void MainWindow: :createMenus ()

{
fileMenu = new QPopupMenu(this);
newAct->addTo (fileMenu) ;
openAct->addTo(fileMenu) ;
saveAct->addTo(fileMenu) ;
exitAct->addTo(fileMenu)

1

createLanguageMenu () ;

}

The createMenus () function creates menus, but does not insert these menus
into the menu bar. Again, this will be done in retranslateStrings().

Dynamic Language Switching 331

At the end of the function, we call createLanguageMenu() to fill the Language
menu with the list of supported languages. We will review its source code in
a moment. First, let’slook at retranslateStrings():

void MainWindow::retranslateStrings()

{
setCaption(tr("Call Center"));

newAct->setMenuText (tr ("&New")) ;
newAct->setAccel (tr("Ctrl+N"));
newAct->setStatusTip(tr("Create a new journal"));

aboutQtAct->setMenuText (tr ("About &Qt"));
aboutQtAct->setStatusTip(tr("Show the Qt library’s About box"));

menuBar () ->clear() ;

menuBar () ->insertItem(tr("&File"), fileMenu);

menuBar () ->insertItem(tr("&Edit"), editMenu);

menuBar () ->insertItem(tr("&Reports"), reportsMenu);
menuBar () ->insertItem(tr("&Language"), languageMenu) ;
menuBar () ->insertItem(tr("&Help"), helpMenu);

}

The retranslateStrings () functionis where all the tr () calls for the MainWindow
class occur. Itis called at the end of the Mainwindow constructor and also every
time a user changes the application’s language using the Language menu.

We set each QAction’s menu text, accelerator, and status tip. We also insert the
menus into the menu bar, with their translated names. (The call to clear() is
necessary when retranslateStrings() is called more than once.)

The createMenus () function referred to earlier called createLanguageMenu() to
populate the Language menu with a list of languages:

void MainWindow: :createLanguageMenu ()
{
QDir dir(gmPath);
QStringList fileNames = dir.entryList("callcenter_*.qgm");

for (int 1 = 0; 1 < (int)fileNames.size(); ++1) {
QTranslator translator;
translator.load(fileNames[i], gmPath);

QTranslatorMessage message =
translator.findMessage("MainWindow", "English");
QString language = message.translation();

int id = languageMenu->insertItem(
tr("&%l %2").arg(i + 1).arg(language),
this, SLOT(switchToLanguage(int)));
languageMenu->setItemParameter(id, 1i);
if (language == "English")
languageMenu->setItemChecked(id, true);

QString locale = fileNames[i];
locale = locale.mid(locale.find(’_") + 1);
locale.truncate(locale.find(’."));

332 15. Internationalization

locales.push_back(locale);

}

Instead of hard-coding the languages supported by the application, we create
one menu entry for each .gn file located in the application’s translations
directory. For simplicity, we assume that English also has a .qm file. An
alternative would have been to call clear() on the QTranslator objects when
the user chooses English.

One particular difficulty is to present a nice name for the language provided
by each . gnfile. Just showing “en” for “English” or “de” for “Deutsch”, based on
the name of the . qnm file, looks crude and will confuse some users. The solution
used in createLanguageMenu () is to check the translation of the string “English”
in the “MainWindow” context. That string should be translated to “Deutsch”
in a German translation, to “Francais” in a French translation, and to “HZ<ZE”
in a Japanese translation.

We create menu items using QPopupMenu: : insertIten(). They are all connected
to the main window’s switchToLanguage (int) slot, which we will review next.
The parameter to the switchToLanguage (int) slot is the value set using set-
ItemParameter (). This is very similar to what we did in Chapter 3 when we im-
plemented the Spreadsheet application’s recently opened files list (p. 54).

At the end, we append the locale in a QStringList called locales, which we will
use for implementing switchToLanguage ().

void MainWindow::switchToLanguage(int param)

{
appTranslator->load("callcenter_" + locales|[param], gmPath);
gtTranslator->load("qgt_" + locales[param], gmPath);

for (int 1 = 0; 1 < (int)languageMenu->count(); ++1)
languageMenu->setItemChecked (languageMenu->idAt (i),
i == param);
retranslateStrings () ;

}

The switchToLanguage () slot is called when the user chooses a language from
the Language menu. We start by loading the translation files for the applica-
tion and for Qt. Then we update the check marks next to the Language menu
entries so that the language in use is ticked, and we call retranslateStrings|()
to retranslate all the strings for the main window.

On Microsoft Windows, an alternative to providing a Language menu is to
respond to LocaleChange events, a type of event emitted by Qt when it detects
a change in the environment’s locale. The event type exists on all platforms
supported by Qt, but is only actually generated on Windows, when the user
changes the system’s locale settings (in the Regional and Language Options
from the Control Panel). To handle LocaleChange events, we can reimplement
QObject::event () as follows:

Dynamic Language Switching 333

bool MainWindow::event (QEvent *event)
{
if (event->type() == QEvent::LocaleChange) {
appTranslator->load(QString("callcenter_")
+ QTextCodec::locale(),
gmPath) ;
gtTranslator->load(QString("qt_") + QTextCodec::locale(),
gmPath) ;
retranslateStrings();

}
return QMainWindow::event (event) ;

}

If the user switches locale while the application is being run, we attempt
to load the correct translation files for the new locale and call retranslate-
Strings () to update the user interface.

In all cases, we pass the event on to the base class’s event () function, since one
of our base classes may also be interested in LocaleChange events.

We have now finished our review of the Mainwindow code. We will now review
the code for one of the application’s widget classes, the Journalview class, to see
what changes are needed to make it support dynamic translation.

JournalView::JournalView(QWidget *parent, const char *name)
: QListView(parent, name)

{

retranslateStrings();

}

The Journalviewclassis a QListView subclass. At the end of the constructor, we
call the private function retranslateStrings() to set the widget’s strings. This
is similar to what we did for Mainwindow.

bool JournalView::event (QEvent *event)
{
if (event->type() == QEvent::LanguageChange)
retranslateStrings();
return QListView::event (event);

}

We reimplement the event() function to call retranslateStrings() on Lan-
guageChange events.

Qt generates a LanguageChange event when the contents of a QTranslator
currently installed on QApplication changes. In the Call Center application,
this occurs when we call 1oad () on appTranslator or gtTranslator, either from
MainWindow: : switchToLanguage () or from MainWindow: :event ().

LanguageChange events are not the same as LocaleChange events. A LocaleChange
event tells the application, “Maybe you should load a new translation.” In
contrast, a LanguageChange event tells the application’s widgets, “Maybe you
should retranslate all your strings.”

334 15. Internationalization

When we implemented MainWindow, we didn’t need to respond to Language-
Change. Instead, we simply called retranslateStrings() whenever we called
load() on a QTranslator.

void JournalView::retranslateStrings()
{
for (int i = columns() - 1; i >= 0; --i)
removeColumn (i) ;
addColumn(tr ("Time")) ;

addColumn(tr ("Priority"));
addColumn(tr ("Phone Number"));
addColumn(tr("Subject"));

}

The retranslateStrings() function recreates the QListView column headers
with newly translated texts. We do this by removing all column headings and
then adding new column headings. This operation only affects the QListView
header, not the data stored in the QListView.

This completes the translation-related code of a hand-written widget. For
widgets and dialogs developed with Q¢ Designer, the uic tool automatically
generates a function similar to our retranslateStrings() function that is
automatically called in response to LanguageChange events. All we need to do
is to load a translation file when the user switches language.

Translating Applications

Translating a Qt application that contains tr () calls is a three-step process:

1. Run lupdate to extract all the user-visible strings from the application’s
source code.

2. Translate the application using Q¢ Linguist.

3. Run 1release to generate binary .qn files that the application can load
using QTranslator.

Steps 1 and 3 are performed by application developers. Step 2 is handled
by translators. This cycle can be repeated as often as necessary during the
application’s development and lifetime.

As an example, we will show how to translate the Spreadsheet application
of Chapter 3. The application already contains tr() calls around every
user-visible string.

First, we must modify the application’s .pro file slightly to specify which
languages we want to support. For example, if we want to support German
and French in addition to English, we would add the following TRANSLATIONS
entry to spreadsheet.pro:

TRANSLATIONS = spreadsheet_de.ts \
spreadsheet_fr.ts

Translating Applications 335

Here, we specify two translation files: one for German and one for French.
These files will be created the first time we run lupdate, and are updated every
time we subsequently run lupdate.

These files normally have a . ts extension. They are in a straightforward XML
format and are not as compact as the binary . gn files understood by QTransla-
tor. It is 1release’s job to convert human-readable . ts files into machine-effi-
cient .qgm files. For the curious, . ts stands for “translation source” and . gn for
“Qt message” file.

Assuming that we are located in the directory that contains the Spreadsheet
application’s source code, we can run lupdate on spreadsheet.pro from the
command line as follows:

lupdate -verbose spreadsheet.pro

The -verbose argument is optional. It tells lupdate to provide more feedback
than usual. Here’s the expected output:

Updating ’spreadsheet_de.ts’..

0 known, 101 new and 0 obsoleted messages
Updating ’spreadsheet_fr.ts’..

0 known, 101 new and 0 obsoleted messages

Every string that appears within a tr() call in the application’s source code is
stored in the . ts files, along with an empty translation. Strings that appear
in the application’s . ui files are also included.

The 1update tool assumes by default that the arguments to tr() are Latin-1
strings. If this isn’t the case, we must add a CODEC entry to the .pro file.
For example:

CODEC = EUC-JP

This must be done in addition to calling QTextCodec: : setCodecForTr () from the
application’s main() function.

Translations then need to be added to the spreadsheet_de. ts and spreadsheet_
fr.ts files using Q¢ Linguist, a GUI tool for translating Qt applications.

To launch Q¢ Linguist, click Qt 3.2.x|Qt Linguist in the Start menu on Windows,
type linguist on the command line on Unix, or double-click linguist in the
Mac OS X Finder. To start adding translations to a . ts file, click File|Open and
choose the file.

The left-hand side of Q¢ Linguist’s main window shows the list of contexts
for the application being translated. For the Spreadsheet application, the
contexts are “FindDialog”, “GoToCellDialog”, “MainWindow”, “SortDialog”,
and “Spreadsheet”. The top-right area is the list of source texts for the current
context. Each source text is shown along with with a translation and a Done
flag. The middle-right area is where we can enter a translation for the current
source item. The bottom-right area is a list of suggestions automatically
provided by Q¢ Linguist.

336 15. Internationalization

Once we have a translated . ts file, we need to convert it to a binary .qn file
for it to be understandable by QTranslator. To do this from within @¢ Linguist,
click File|Release. Typically, we would start by translating only a few strings
and run the application with the . gn file to make sure that everything works.

Qt Linguist by Trolltech - /Users/schulz/spreadsheet_fr.ts =
\WII&H- Oflexon @ [[a[o]r[]s][a]n]|[v]
(SR ES] |Done¥ | Source text Translation
|Done¥ | Context Items o Column: Colonne: m
FindDialog 1/6 o Ascending Ascendant
GoToCellDialog 3/4 o Descending Descendant
MainWindow 0/74 o Order: Ordre: Py
SortDialog 7/12 % &Tertiary Key Clé &tertiaire 3
Spreadsheet 0/5
Source text \
&Tertiary Key
Translation
Clé &tertiaire
P phrases and guesses:
Source phrase Translation ' Definition ¥
&Primary Key Clé &primaire Guess (1)

11/101 |MOD A

Figure 15.2. @t Linguist in action

If we want to regenerate the . qgn files for all . ts files, we can use the 1release
command-line tool as follows:

lrelease -verbose spreadsheet.pro

Assuming that we translated 19 strings to French and clicked the Done flag for
17 of them, 1release produces the following output:

Updating ’spreadsheet_de.gm’...

0 finished, 0 unfinished and 101 untranslated messages
Updating ’spreadsheet_fr.gm’...

17 finished, 2 unfinished and 82 untranslated messages

Untranslated strings are shown in the original languages when running the
application. The Done flag isn’t used by 1release;it can be used by translators
to identify which translations are finished and which ones must be revisited.

When we modify the source code of the application, the translation files may
become out of date. The solution is to run lupdate again, provide translations
for the new strings, and regenerate the .qnm files. Some development teams
find it useful to run lupdate frequently, while others prefer to wait until just
before a final product release.

The 1update and Q¢ Linguist tools are quite smart. Translations that are no
longer used are kept in the . ts files in case they are needed in later releases.
When updating .ts files, lupdate uses an intelligent merging algorithm that

Translating Applications 337

can save translators considerable time with text that is the same or similar in
different contexts.

For more information about Q¢ Linguist, lupdate, and lrelease, refer to the
@t Linguist manual at http://doc.trolltech.com/3.2/linguist-manual.html.
The manual contains a full explanation of Q¢ Linguist’s user interface and a
step-by-step tutorial for programmers.

* Tooltips, Status Tips, and
“What’s This?” Help

e Using QTextBrowser as a
Simple Help Engine

e Using Qt Assistant for
Powerful Online Help

Providing Online Help

Most applications provide their users with online help. Some help is short,
such as tooltips, status tips, and “What’s This?” help. Qt supports all of these.
Other help can be much more extensive, involving many pages of text. For
this kind of help, you can use QTextBrowser as a simple online help browser, or
you can invoke @t Assistant or another HTML browser from your application.

Tooltips, Status Tips, and “What’s This?” Help

A tooltip is a small piece of text that appears when the mouse hovers over a
widget for a certain period of time. Tooltips are presented with black text on
a yellow background. Their primary use is to provide textual descriptions of
toolbar buttons.

We can add tooltips to arbitrary widgets in code using QToolTip::add().
For example:

QToolTip::add(findButton, tr("Find next"));

To set the tooltip of a toolbar button that corresponds to a QAction, we can
simply call setToolTip() on the action. For example:

newAct = new QAction(tr("&New"), tr("Ctrl+N"), this);
newAct->setToolTip(tr("New file"));

If we don’t explicitly set a tooltip, QAction will automatically derive one from
the action text and the accelerator key (for example, “New (Ctrl+N)”).

A statustipis also a short piece of descriptive text, usually a little longer than
a tooltip. When the mouse hovers over a toolbar button or a menu option, a
status tip appears in the status bar. Call setStatusTip() to add a status tip to
an action:

339

340 16. Providing Online Help

newAct->setStatusTip(tr("Create a new file"));

In the absence of a status tip, QAction will use the tooltip text instead.

If we don’t use QActions, we need to pass a QToolTipGroup object and a status
tip as the third and fourth arguments to QToolTip: :add():

QToolTip::add(findButton, tr("Find next"), toolTipGroup,
tr("Find the next occurrence of the search text"));

The application can be made to show the longer text in the status bar by
connecting the QTool1TipGroup’s showTip() and removeTip() signals to the status
bar’s message() and clear() slots. The QToolTipGroup object is responsible for
maintaining contact between tooltips and a widget that can show the longer
help text.

[=|[oix]

16 | 3 (D @] w2

I Authors

Steve MeConnell

Cormputakility M. J. Cutland

Cesign Fatterns Erich Gamma, Richard Helm, Falph Johnson, John Vissides

Code Complete

: Michagl 0. Albertson, Joan F. Hotehinson
Ezzential System Administration ZEleen Frizch
First Orcler Mathematical Logic Angelo Margaris
Introduction to Algorithms Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
Learning GMU Emacs Debra Cameron, Bill Rosenklatt, Eric Raymoand
Object Oriented Perl Darnian Conway
Pazcal YWalter J. Savitch
Fralog Ivan Bratko
Python Essential Reference David M. Beazley
Fapid Development Steve McConnell
The &t of Compuater Frogramming Cionald E. Knuth
Wi [Mproved--4inm Steve Oualline
Open an existing file 4

Figure 16.1. An application showing a tooltip and a status tip

In Qt Designer, tooltips and status tips are accessible through the toolTip and
statusTip properties of a widget or action.

In some situations, it is desirable to provide more information about a widget
than can be given by tooltips or status tips. For example, we might want
to provide a complex dialog with explanatory text about each field without
forcing the user to invoke a separate help window. “What’s This?” mode is an
ideal solution for this. When a window is in “What’s This?” mode, the cursor
changesto [3? and the user can click on any user interface component to obtain
its help text. To enter “What’s This?” mode, the user can either click the ?
button in the dialog’s title bar (on Windows and KDE) or press Shift+F1.

The help text can be set by calling QwhatsThis::add(). Here’s an example:

Tooltips, Status Tips, and “What’s This?” Help 341

QWhatsThis: :add(sourceLineEdit,
tr(""

" The meaning of the Source field depends on the "
"Type field:"
n ll
"<1i>Books have a Publisher"
"Articles have a Journal name with volume and "
"issue number"
"<1i>Thesis have an Institution name and a "
"department name"
llll)) ;

As with many other Qt widgets, we can use HTML-style tags to format the
text of a tooltip. In the example, we include an image (which is listed in the
application’s . pro file IMAGE entry), a bulleted list, and some text in bold. The
tags that Qt supports are specified in the QStyleSheet documentation.

plAEDba: (2l[ol[x]
Type I Book LI

Title | Fapidl Development

duthors | Steve MeCannel

Souree |Micrasaft Pres

ear |2EII33 3: :> The meaning of the Source field

it depends on the Type field:

* Books have a Publisher

* Articles have a Journal name with
volume and issue number

* Thesis have ah Institution name

and a department name

Corporate and commerci
one important problem-h
under contral. In RAPID

that concern heac-an wi
waluahle tips that help sh
projects moving.

Helg | Save I Cancel

Figure 16.2. A dialog showing a “What’s This?” help text

We can also set a “What’s This?” text on an action:

openAct->setWhatsThis (tr(" "
"Click this option to open an "
"existing file."));

The text will be shown when the user clicks the menu item or toolbar button or
presses the accelerator key while in “What’s This?” mode. In @¢ Designer, the
“What’s This?” text for a widget or action is available through the whatsThis
property.

When the user interface components of an application’s main window provide
“What’s This?” text, it is customary to provide a What's This? option in the Help
menu as well as a What's This? toolbar button. This can be done by creating a
What's This? action and connecting its activated() signal to the QMainWindow’s
whatsThis () slot, which enters “What’s This?” mode when executed.

342 16. Providing Online Help

Using QTextBrowser as a Simple Help Engine

Large and sophisticated applications may require more online help than
tooltips, status tips, and “What’s This?” help can provide. A simple solution
to this is to provide a help browser. Applications that provide a help browser
typically have a Help entry in the main window’s Help menu and a Help button
in every dialog.

In this section, we present the simple help browser shown in Figure 16.3
and explain how it can be used within an application. The window uses a
QrextBrowser to display help pages that are marked up with an HTML-based
syntax. QTextBrowser can handle a lot of simple HTML tags, so it is ideal for
this purpose.

CatalogHelpt>

Introduction

The Catalog application is used to maintain a bibliographic database of books, articles, thesis and other
reference material used by researchers.

The application has facilities for adding, editing and deleting catalog entries, and for searching for
particular entries.

Cantents

1. Adding Mew Entries

2. Editing Existing Entries
3. Deleting Entries

4. Searching for Entries

Figure 16.3. The HelpBrowser widget

We begin with the header file:
#include <gwidget.h>

class QPushButton;
class QTextBrowser;

class HelpBrowser : public QWidget
{
Q_OBJECT
public:
HelpBrowser (const QString &path, const QString &page,
QWidget *parent = 0, const char *name = 0);

static void showPage(const QString &page);

private slots:
void updateCaption();

private:

Using QTextBrowser as a Simple Help Engine 343

QTextBrowser *textBrowser;

QPushButton *homeButton;

QPushButton *backButton;

QPushButton *closeButton;
}i

The HelpBrowser provides a static function that can be called from anywhere
in the application. This function creates a HelpBrowser window and shows the
given page.

Here’s the beginning of the implementation:

#include <gapplication.h>
#include <glayout.h>
#include <gpushbutton.h>
#include <qgtextbrowser.h>

#include "helpbrowser.h"

HelpBrowser: :HelpBrowser (const QString &path, const QString &page,
QWidget *parent, const char *name)
: QWidget (parent, name, WGroupLeader | WDestructiveClose)

textBrowser = new QTextBrowser(this);

homeButton = new QPushButton(tr("&Home"), this);
backButton = new QPushButton(tr("&Back"), this);
closeButton = new QPushButton(tr("Close"), thig);

closeButton->setAccel (tr("Esc"));

QVBoxLayout *mainLayout = new QVBoxLayout (this);
QHBoxLayout *buttonLayout = new QHBoxLayout (mainLayout) ;
buttonLayout->addWidget (homeButton) ;
buttonLayout->addWidget (backButton) ;
buttonLayout->addStretch(1);

buttonLayout->addWidget (closeButton) ;
mainLayout->addWidget (textBrowser) ;

connect (homeButton, SIGNAL(clicked()),
textBrowser, SLOT(home()));

connect (backButton, SIGNAL(clicked()),
textBrowser, SLOT(backward()));

connect (closeButton, SIGNAL(clicked()
this, SLOT(close()));

connect (textBrowser, SIGNAL (sourceChanged(const QString &)),
this, SLOT (updateCaption()));

I

textBrowser->mimeSourceFactory() ->addFilePath(path);
textBrowser->setSource(page) ;

}

The layout is simply a row of buttons above a QTextBrowser. The path param-
eter is a path in the file system that contains the application’s documentation.
The page parameter is the name of the documentation file, with an optional
HTML anchor.

We use the wWeroupLeader flag because we want to pop up HelpBrowser windows
from modal dialogs in addition to the main window. Modal dialogs normally

344 16. Providing Online Help

prevent the user from interacting with any other window in the application.
However, after requesting help, the user must obviously be allowed to interact
with both the modal dialog and the help browser. Using the WGroupLeader flag
makes this interaction possible.

void HelpBrowser::updateCaption()

{

setCaption(tr("Help: %1").arg(textBrowser->documentTitle()));

}

Whenever the source page changes, the updateCaption() slot is executed. The
documentTitle() function returns the text specified in the page’s <title> tag.

void HelpBrowser::showPage(const QString &page)

{
QString path = gApp->applicationDirPath() + "/doc";
HelpBrowser *browser = new HelpBrowser(path, page);
browser->resize (500, 400);
browser->show() ;

}

In the showpage () static function, we create the HelpBrowser window and then
show it. The window will be destroyed automatically when the user closes it,
since we set the WhestructiveClose flag in the constructor.

For this example, we assume that the documentation is located in the doc
subdirectory of the directory containing the application’s executable. All the
pages passed to the showPage () function will be taken from this doc subdirec-
tory.

Now we are ready to invoke the help browser from the application. In the
application’s main window, we would create a Help action and connect it to a
help() slot that could look like this:

void MainWindow::help()
{

HelpBrowser::showPage("index.html");
}

This assumes that the main help file is called index. htnl. For dialogs, we would
connect the Help button to a help() slot that could look like this:

void EntryDialog::help()
{

HelpBrowser::showPage("dialogs.html#entrydialog") ;
}

Here we look in a different help file, dialogs.html, and scroll the QTextBrowser
to the entrydialog anchor.

One other place from which we might want to invoke help is a “What’s
This?” text. We can link the “What’s This?” text to the documentation by using
HTML tags.

Using QTextBrowser as a Simple Help Engine 345

ﬂ<:> The meaning of the Source field
depends on the Type field:

* Books have a Publisher

* Articles have a Journal name with
wolume and issue number

* Thesis have an Institution name
ahd a department name

Figure 16.4. A “What’s This?” text with links

To make hypertext links work from “What’s This?” text, we must use a gwhats-
This that is aware of the help browser. This is accomplished by subclassing
QWhatsThis and reimplementing its clicked() function to call HelpBrowser::
showPage (). Here’s the class definition:

class MyWhatsThis : public QWhatsThis
{
public:
MyWhatsThis (QWidget *widget, const QString &text);

QString text(const QPoint &point);
bool clicked(const QString &page);

private:
QString myText;
}i

The text () and clicked() functions are reimplemented from QWhatsThis.

MyWhatsThis::MyWhatsThis (QWidget *widget, const QString &text)
: QWhatsThis (widget)

{
myText = text;

}

The constructor accepts a widget and a “What’s This?” text for that widget. We
pass on the widget to the base class and store the text in a private variable.

QString MyWhatsThis::text(const QPoint &)
{
return myText;

}

The text () function returns the “What’s This?” text for a widget given a cer-
tain mouse cursor position. For some widgets, it might make sense to return
a different text depending on where the user clicked on it, but here we always
return the same text.

bool MyWhatsThis::clicked(const QString &page)
{
if (page.isEmpty()) {
return true;
} else {
HelpBrowser: :showPage (page) ;

346 16. Providing Online Help

return false;

}

The clicked() function is called by QwhatsThis when the user clicks on the
“What’s This?” window. If the user clicked on an HTML link, QWhatsThis
passes the target page to the clicked() function. (If anything else is clicked,
an empty string is passed.) We invoke the help browser with the given page.

The return value of clicked() is used by QwhatsThis to determine whether it
should hide the “What’s This?” text (indicated by true) or continue to show it.
When the user clicks a link, we want the “What’s This?” to stay visible along
with the help window, so we return false. If the user clicked elsewhere in the
“What’s This?” window, we return true to hide the “What’s This?” window.

Here’s how the MyWhatsThis class can be used:

new MyWhatsThis(sourceLineEdit,
tr(""
"gnbsp; The meaning of the "
"Source field depends on "
"the Type field:"
n <u1>|l
1<1i>Books have a Publisher"
"<1i>Articles have a Journal name with volume and "
"issue number"
"<1i>Thesis have an Institution name and a department "
"name</1i>"
n"));

Instead of calling QwhatsThis::add(), we create a MyWhatsThis object with the
widget and its associated text. But this time, if the user clicks a link, the help
browser is invoked.

It may look strange that we allocate an object with new and don’t assign the
value to a variable. This is not a problem here because Qt keeps track of all
QWhatsThis objects and deletes them when they are no longer needed.

Using Qt Assistant for Powerful Online Help

Qt Assistant is a redistributable online help application supplied by Trolltech.
Its main virtues are that it supports indexing and full text search and that it
can handle multiple documentation sets for multiple applications.

To make use of @t Assistant, we must incorporate the necessary code in our
application, and we must make @t Assistant aware of our documentation.

Communication between a Qt application and Q¢ Assistant is handled by the
QAssistantClient located in a separate library. To link this library with an
application, we must add the following line to the application’s .pro file:

LIBS += -lgassistantclient

Using Qt Assistant for Powerful Online Help 347

We will now review the code of a new HelpBrowser class that uses Q¢ Assis-
tant.

#ifndef HELPBROWSER_H
#define HELPBROWSER_H

class QAssistantClient;

class HelpBrowser
{
public:
static void showPage(const QString &page);

private:
static QAssistantClient *assistant;

}i
#endif
Here’s the new helpbrowser. cpp:
#include <gassistantclient.h>
#include "helpbrowser.h"
QAssistantClient *HelpBrowser::assistant = 0;

void HelpBrowser::showPage(const QString &page)
{
if (lassistant)
assistant = new QAssistantClient("");
assistant->showPage (page) ;

}

The gassistantClient constructor accepts a path string as its first argument,
which it uses to locate the Q¢ Assistant executable. By passing an empty
path, we signify that QassistantClient should look for the executable in the
PATH environment variable. QAssistantClient has its own showPage () function
that accepts a page name with an optional HTML anchor, just like the earlier
QOTextBrowser subclass’s showPage () function.

The next step is to tell @t Assistant where the documentation is located. This
is done by creating a @t Assistant profile and creating a . dcf file that provides
information about the documentation. All this is explained in Q¢ Assistant’s
online documentation, so we will not duplicate that information here.

An alternative to using QTextBrowser or @t Assistant is to use platform-specific
approaches to providing online help. For Windows applications, it might be
desirable to create Windows HTML Help files and to provide access to them
using Microsoft Internet Explorer. You could use Qt’s QProcess class or the
ActiveQt framework for this. For Unix and Mac OS X applications, a suitable
approach might be to provide HTML files and launch a web browser.

e Working with Threads

e Communicating with the GUI
Thread

* Using Qt’s Classes in
Non-GUI Threads

Multithreading

Conventional GUI applications have one thread of execution and perform one
operation at a time. If the user invokes a time-consuming operation from the
user interface in a single-threaded application, the interface typically freezes
while the operation is in progress. Chapter 7 (Event Processing) provides
some solutions to this problem. Multithreading is another solution.

In a multithreaded Qt application, the GUI runs in its own thread and the pro-
cessing takes place in one or more other threads. This results in applications
that have responsive GUIs even during intensive processing. Another benefit
of multithreading is that on multiprocessor machines different threads may
be executed simultaneously on different processors, resulting in better per-
formance.

In this chapter, we will start by showing how to subclass QThread and how to
use QMutex, QSemaphore, and QWaitCondition to synchronize threads. Then we
will see how to communicate with the GUI thread from non-GUI threads while
the event loop is running, and round off with a review of which Qt classes can
be used in non-GUI threads and which cannot.

Multithreading is a large topic with many books devoted exclusively to the
subject. Here, it is assumed that you already understand the fundamentals
of multithreaded programming; the focus is on explaining how to develop
multithreaded Qt applications rather than on the subject of threading itself.

Working with Threads

Providing multiple threads in a Qt application is straightforward: We just
subclass QThread and reimplement its run() function. To show how this works,
we will start by reviewing the code for a very simple QThread subclass that
repeatedly prints the same text on a console.

349

350 17. Multithreading

class Thread : public QThread

{
public:
Thread () ;

void setMessage(const QString &message);
void run();
void stop();

private:
QString messageStr;
volatile bool stopped;
i

The Thread class inherits from QThread and reimplements the run() function.
It provides two additional functions: setMessage() and stop().

The stopped variable is declared volatile because it is accessed from different
threads and we want to be sure that it is freshly read every time it is needed.
If we omitted the volatile keyword, the compiler might optimize access to the
variable, possibly leading to incorrect results.

Thread: :Thread()
{

stopped = false;
}

We set stopped to false in the constructor.

void Thread::runf()
{
while (!stopped)
cerr << messageStr.ascii();
stopped = false;
cerr << endl;

}

The run() function is called to start executing the thread. As long as the
stopped variable is false, the function keeps printing the given message to the
console. The thread terminates when control leaves the run() function.

void Thread::stop()
{

stopped = true;
}

The stop() function sets the stopped variable to true, thereby telling run() to
stop printing text to the console. This function can be called from any thread
at any time. For the purposes of this example, we assume that assignment to
a bool is an atomic operation. This is a reasonable assumption, considering
that a bool is either true or false. We will see later in this section how to use
QMutex to guarantee that assigning to a variable is an atomic operation.

QThread provides a terminate() function that terminates the execution of a
thread while it is still running. Using terminate() is not recommended, since
it can stop the thread at any point and does not give the thread any chance to

Working with Threads 351

clean up after itself. It is always safer to use a stopped variable and a stop()
function, as we did here.

M Threads

Start A H Start B] Quit

Figure 17.1. The Threads application

We will now see how to use the Thread class in a small Qt application that uses
two threads, A and B, in addition to the initial thread.

class ThreadForm : public QDialog
{
Q_OBJECT
public:
ThreadForm(QWidget *parent = 0, const char *name = 0);

protected:
void closeEvent (QCloseEvent *event);

private slots:
void startOrStopThreadA() ;
void startOrStopThreadB() ;

private:
Thread threadA;
Thread threadB;
QPushButton *threadAButton;
QPushButton *threadBButton;
QPushButton *quitButton;

i

The ThreadfForm class declares two variables of type Thread and some buttons
to provide a basic user interface.

ThreadForm: : ThreadForm(QWidget *parent, const char *name)
: QDialog(parent, name)

{
setCaption(tr("Threads"));

threadA. setMessage ("A");
threadB.setMessage("B");

threadAButton = new QPushButton(tr("Start A"), this);
threadBButton = new QPushButton(tr("Start B"), thig);
quitButton = new QPushButton(tr("Quit"), this);
quitButton->setDefault (true);

connect (threadAButton, SIGNAL(clicked()),
this, SLOT(startOrStopThreadA()));

connect (threadBButton, SIGNAL(clicked()
this, SLOT(startOrStopThreadB()

)

352 17. Multithreading

connect (quitButton, SIGNAL(clicked()),
this, SLOT(close()));

}

In the constructor, we call setMessage() to make the first thread repeatedly
print “A” and the second thread “B”.

void ThreadForm::startOrStopThreadA()
{
if (threadA.running()) {
threadA.stop() ;
threadAButton->setText (tr("Start A"));
} else {
threadA.start();
threadAButton->setText (tr("Stop A"));

}

When the user clicks the button for thread A, startOrStopThreada() stops
the thread if it was running and starts it otherwise. It also updates the but-
ton’s text.

void ThreadForm::startOrStopThreadB()
{
if (threadB.running()) {
threadB.stop() ;
threadBButton->setText (tr("Start B"));
} else {
threadB.start();
threadBButton->setText (tr("Stop B"));

}

The code for startOrStopThreadB () is very similar.

void ThreadForm::closeEvent (QCloseEvent *event)
{
threadA.stop()
threadB.stop()
threadA.wait()
threadB.wait()
event->accept () ;

)
}

If the user clicks Quit or closes the window, we stop any running threads and
wait for them to finish (using QThread::wait()) before we call QCloseEvent::
accept (). This ensures that the application exits in a clean state, although it
doesn’t really matter in this example.

To compile the application, we must add this line to the .pro file:
CONFIG += thread

This tells gmake to use the threaded version of the Qt library. To build a thread-
ed Qt library, pass the -thread command-line option to the configure script on

Working with Threads 353

Unix and Mac OS X. On Windows, the Qt library is threaded by default. For
this particular example, we also need the console option since we want the
program’s output to appear in the console on Windows:

win32:CONFIG += console

If you run the application and click Start A, the console will be filled with ‘A’s.
If you click Start B, it will now fill with alternating sequences of ‘A’s and ‘B’s.
Click Stop A, and now it will only print ‘B’s.

A common requirement for multithreaded applications is that of synchroniz-
ing several threads. Qt provides the following classes to do this: QMutex, QMu-
texLocker, QSemaphore, and QWaitCondition.

The QMutex class provides a means of protecting a variable or a piece of code
so that only one thread can access it at a time. The class provides a lock()
function that locks the mutex. If the mutex is unlocked, the current thread
seizes it immediately and locks it; otherwise, the current thread is blocked
until the thread that holds the mutex unlocks it. Either way, when the call
to lock() returns, the current thread holds the mutex until it calls unlock().
QMutex also provides a tryLock() function that returns immediately if the
mutex is already locked.

For example, let’s suppose that we wanted to protect the stopped variable of
the Thread class with a QMutex. We would then add the following data member
to Thread:

QMutex mutex;
The run() function would change to this:

void Thread::run()
{
for (;:) {
mutex.lock() ;
if (stopped) {
stopped = false;
mutex.unlock();
break;
}

mutex.unlock() ;

cerr << messageStr.ascii();

}

cerr << endl;

}

The stop() function would become this:

void Thread::stop()
{
mutex.lock();
stopped = true;
mutex.unlock();

354 17. Multithreading

Locking and unlocking a mutex in complex functions, especially functions that
use C++ exceptions, can be error-prone. Qt provides the QMutexLocker conve-
nience class to simplify mutex handling. QMutexLocker’s constructor accepts a
QMutex as argument and locks it. QMutexLocker’s destructor unlocks the mutex.
For example, we could rewrite the stop() function above as follows:

void Thread::stop()
{

QMutexLocker locker (&mutex) ;
stopped = true;
}

QSemaphore provides semaphores in Qt. A semaphore is a generalization of
mutexes that can be used to guard a certain number of identical resources.

The following two code snippets show the correspondence between QSemaphore
and QMutex:

QSemaphore semaphore(1); QMutex mutex;
semaphorett; mutex.lock() ;
semaphore--; mutex.unlock();

The postfix ++ and -- operators acquire and release one resource protected by
the semaphore. By passing 1 to the constructor, we tell the semaphore that it
controls a single resource. The advantage of using a semaphore is that we can
pass numbers other than 1 to the constructor and then call ++ multiple times
to acquire many resources.

A typical application of semaphores is when transfering a certain amount of
data (pataSize) between two threads using a shared circular buffer of a certain
size (BufferSize):

const int DataSize = 100000;
const int BufferSize = 4096;
char buffer[BufferSize];

The producer thread writes data to the buffer until it reaches the end, and
then restarts from the beginning, overwriting existing data. The consumer
thread reads the data asit is generated. Figure 17.2illustrates this, assuming
a tiny 16-byte buffer.

usedSpace (5) freeSpace (11)

»le »le
L >

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ATaTelcTe T Talel T I [T [1]

A

consumer producer

Figure 17.2. The producer—consumer model

The need for synchronization in the producer—consumer example is twofold:
If the producer generates the data too fast, it will overwrite data that the
consumer hasn’t yet read; if the consumer reads the data too fast, it will pass
the producer and read garbage.

Working with Threads 355

A crude way to solve this problem is to have the producer fill the buffer, then
wait until the consumer has read the entire buffer,and so on. However, on mul-
tiprocessor machines, this isn’t as fast as letting the producer and consumer
threads operate on different parts of the buffer at the same time.

One way to efficiently solve the problem is to use two semaphores:

QSemaphore freeSpace(BufferSize);
QSemaphore usedSpace(BufferSize);

The freeSpace semaphore governs the part of the buffer that the producer
can fill with data. The usedSpace semaphore governs the area that the con-
sumer can read. These two areas are complementary. Both are initialized
with BufferSize (4096), meaning that they can administer up to that many
resources.

For this example, each byte counts as one resource. In a real-world application,
we would probably operate on larger units (for example, 64 or 256 bytes at a
time) to reduce the overhead associated with using semaphores.

void acquire(QSemaphore &semaphore)
{
semaphore++;

}

The acquire() function attempts to acquire one resource (one byte in the
buffer). gsemaphore uses the postfix ++ operator for this, but in our particular
example it is more intuitive to use a function called acquire().

void release(QSemaphore &semaphore)
{
semaphore--;

}

Similarly, we implement the release() function as a synonym for the postfix
-- operator.

void Producer::runf()
{
for (int 1 = 0; 1 < DataSize; ++i) {
acquire(freeSpace) ;
buffer[i % BufferSize] = "ACGT"[(uint)rand() % 4];
release(usedSpace) ;

}

In the producer, we start by acquiring one “free” byte. If the buffer is full of
data that the consumer hasn’t read yet, the call to acquire() will block until
the consumer has started to consume the data. Once we have acquired the
byte, we fill it with some random data (‘A’, ‘C’, ‘G’, or “T") and release the byte
as “used”, so that it can be read by the consumer thread.

void Consumer::run()

{

for (int 1 = 0; 1 < DataSize; ++i) {

356 17. Multithreading

acquire(usedSpace) ;
cerr << buffer[i % BufferSize];
release(freeSpace);

}

cerr << endl;

}

In the consumer, we start by acquiring one “used” byte. If the buffer contains
no data to read, the call to acquire () will block until the producer has produced
some. Once we have acquired the byte, we print it and release the byte as
“free”, making it possible for the producer to fill it with data again.

int main()
{

usedSpace += BufferSize;

Producer producer;
Consumer consumer;
producer.start();
consumer.start();
producer.wait();
consumer.wait () ;
return 0;

}

Finally,in main (), we start by acquiring all the “used” space (using QSemaphore’s
counterintuitive += operator) to ensure that the consumer will not acquire it
and read garbage. Then we start the producer and consumer threads. What
happens then is that the producer converts some “free” space into “used”
space, and the consumer can then convert it back to “free” space.

When we run the program, it writes a random sequence of 100,000 ‘A’s, ‘C’s,
‘G’s, and “T’s to the console and then terminates. To really understand what is
going on, we can disable writing the output and instead write ‘P’ each time the
producer generates a byte and ‘c’ each time the consumer reads a byte. And to
make things as simple to follow as possible, we can use much smaller values
for DataSize and BufferSize.

For example, here’s a possible run with a DataSize of 10 and a BufferSize
of 4: “PcPcPcPcPcPcPcPcPcPc”. In this case, the consumer reads the bytes
as soon as they are generated by the producer; the two threads are executing
at the same speed. Another possibility is that the producer fills the whole
buffer before the consumer even starts reading it: “PPPPccccPPPPccccPPcc”.
There are many other possibilities. Semaphores give a lot of latitude to the
system-specific thread scheduler, which can study the threads’ behavior and
choose an optimal scheduling policy.

A different approach to the problem of synchronizing a producer and a con-
sumer is to use QWaitCondition and oMutex. A QWaitCondition allows a thread
to wake up other threads when some condition has been met. This allows
for more precise control than is possible with mutexes alone. To show how it
works, we will redo the producer—consumer example using wait conditions.

Working with Threads 357

const int DataSize = 100000;
const int BufferSize = 4096;
char buffer[BufferSize];

QWaitCondition bufferIsNotFull;
QWaitCondition bufferIsNotEmpty;
QMutex mutex;

int usedSpace = 0;

In addition to the buffer, we declare two QwaitConditions, one QMutex, and one
variable that stores how many bytes in the buffer are “used” bytes.

void Producer::runf()
{
for (int 1 = 0; 1 < DataSize; ++i) {
mutex.lock();
while (usedSpace == BufferSize)
bufferIsNotFull.wait (&mutex) ;
buffer[i % BufferSize] = "ACGT"[(uint)rand() % 4];
++usedSpace;
bufferIsNotEmpty.wakeAll();
mutex.unlock();

}

In the producer, we start by checking whether the buffer is full. If itis, we wait
on the “buffer is not full” condition. When that condition is met, we write one
byte to the buffer, increment usedspace, and wake any thread waiting for the
“buffer is not empty” condition to turn true.

We use a mutex to protect all accesses to the usedspace variable. The gwaitCon-
dition::wait() function can take a locked mutex as its first argument, which
it unlocks before blocking the current thread and then locks before returning.

For this example, we could have replaced the while loop

while (usedSpace == BufferSize)
bufferIsNotFull.wait (&mutex);

with this if statement:

if (usedSpace == BufferSize) f{
mutex.unlock() ;
bufferIsNotFull.wait();
mutex.lock() ;

}

However, this would break as soon as we allow more than one producer thread,
since another producer could seize the mutex immediately after the wait ()
call and make the “buffer is not full” condition false again.

void Consumer::runf()
{
for (int 1 = 0; 1 < DataSize; ++1i) {
mutex.lock();
while (usedSpace == 0)
bufferIsNotEmpty.wait (&mutex) ;

358 17. Multithreading

cerr << buffer[i % BufferSize];
--usedSpace;
bufferIsNotFull.wakeAll();
mutex.unlock() ;

}

cerr << endl;

}

The consumer does the opposite of the producer: It waits for the “buffer is
not empty” condition and wakes up any thread waiting for the “buffer is not
full” condition.

In all the examples so far, our threads have accessed the same global variables.
But some threaded applications need to have a global variable hold different
values in different threads. This is often called thread-local storage (TLS) or
thread-specific data (TSD). We can fake it using a map keyed on thread IDs
(returned by QThread::currentThread()), but a nicer approach is to use the
QThreadStorage<T> class.

A common use of QThreadStorage<T> is for caches. By having a separate cache
in different threads, we avoid the overhead of locking, unlocking, and possibly
waiting for a mutex. For example:

QThreadStorage<QMap<int, double> *> cache;

void insertIntoCache(int id, double value)
{
if (!cache.hasLocalDatal()
cache.setLocalData(new QMap<int, double>);
cache.localData()->insert(id, value);
}

void removeFromCache(int id)
{
if (cache.hasLocalDataf()
cache.localData()->remove(id);
}

The cache variable holds one pointer to a QMap<int, double> per thread. (Be-
cause of problems with some compilers, the template type in QThreadstor-
age<T> must be a pointer type.) The first time we use the cache in a particu-
lar thread, hasLocalData() returns false and we create the QMap<int, double>
object.

In addition to caching, QThreadStorage<T> can be used for global error-state
variables (similar to errno), to ensure that modifications in one thread don’t
affect other threads.

Communicating with the GUI Thread 359

Communicating with the GUI Thread

When a Qt application starts, only one thread is running—the initial thread.
This is the only thread that is allowed to create the Qapplication object and
call exec() on it. For this reason, we normally refer to this thread as the GUI
thread. After the call to exec(), this thread is either waiting for an event or
processing an event.

The GUI thread can start new threads by creating objects of a QThread sub-
class,as we did in the previous section. If these new threads need to communi-
cate among themselves, they can use shared variables together with mutexes,
semaphores, or wait conditions. But none of these techniques can be used to
communicate with the GUI thread, since they would lock the event loop and
freeze the user interface.

The solution for communicating from a non-GUI thread to the GUI thread is
to use custom events. Qt’s event mechanism allows us to define custom event
types in addition to the built-in types, and allows us to post events of these
types using QaApplication::postEvent(). Furthermore, since postEvent() is
thread-safe, we can use it from any thread to post events to the GUI thread.

W YF4206.jpg - Image Pro IZHEI@
Eile Help

Flip Horizontally Ctrl+H

Flip Vertically Ctrl+v l

Resize... Ctrl+R

8 Bit

® Yrazos £ B

Convert to 8-bitimage

Figure 17.3. The Image Pro application

To illustrate how this works, we will review the code of the Image Pro applica-
tion, a basic image processing application that allows the user to rotate, resize,
and change the color depth of an image. The application uses one non-GUI
thread to perform operations on images without locking the event loop. This
makes a significant difference when processing large images. The non-GUI

360 17. Multithreading

thread has a list of tasks, or “transactions”, to accomplish, and sends events to
the main window to report progress.

ImageWindow: : ImageWindow (QWidget *parent, const char *name)
QMainWindow (parent, name)

{
thread.setTargetWidget (this) ;

}

In the ImageWwindow constructor, we set the “target widget” of the non-GUI
thread to be the ImageWindow. The thread will post progress events to that
widget. The thread variable is of type TransactionThread, which we will cover
in a moment.

void ImageWindow::flipHorizontally()
{

addTransaction(new FlipTransaction(Horizontal));
}

The flipHorizontally() slot creates a “flip” transaction and registers it using
the private function addTransaction(). The flipVertical(), resizeImage(),
convertTo32Bit (), convertTo8Bit (), and convertTolBit () functions are similar.

void ImageWindow::addTransaction(Transaction *transact)
{
thread.addTransaction(transact);
openAct->setEnabled(false);
saveAct->setEnabled(false);
saveAsAct->setEnabled(false);

}

The addTransaction() function adds a transaction to the non-GUI thread’s
transaction queue and disables the Open, Save, and Save As actions while
transactions are being processed.

void ImageWindow::customEvent (QCustomEvent *event)
{

if ((int)event->type() == TransactionStart) {

TransactionStartEvent *startEvent =
(TransactionStartEvent *)event;
infoLabel->setText (startEvent->message) ;

} else if ((int)event->type() == AllTransactionsDone) {
openAct->setEnabled(true);
saveAct->setEnabled(true) ;
saveAsAct->setEnabled(true);
imageLabel->setPixmap (QPixmap (thread. image()));
infoLabel->setText (tr ("Ready"));
modLabel->setText (tr ("MOD")) ;
modified = true;
statusBar () ->message(tr("Done"), 2000);

} else {

OMainWindow: : customEvent (event) ;

}

Communicating with the GUI Thread 361

The customEvent () function is reimplemented from Qobject to handle custom
events. The TransactionStart and AllTransactionsDone constants are defined
in transactionthread.h as

enum { TransactionStart = 1001, AllTransactionsDone = 1002 };

Qt’s built-in events have values below 1000. Higher values can be used for
custom events.

The data type for custom events is QCustomEvent, a QEvent subclass that stores
a void pointer in addition to the event type. For TransactionStart events, we
use a QCustomEvent subclass that stores an additional data member:

class TransactionStartEvent : public QCustomEvent
{
public:

TransactionStartEvent () ;

QString message;
}i

TransactionStartEvent::TransactionStartEvent ()
QCustomEvent (TransactionStart)

{

}

In the constructor, we pass the TransactionStart constant to the base class con-
structor.

Now, let’s turn to the TransactionThread class:

class TransactionThread : public QThread
{
public:
void run();
void setTargetWidget (QWidget *widget);
void addTransaction(Transaction *transact);
void setImage(const QImage &image);
QImage image();

private:
QWidget *targetWidget;
QMutex mutex;
QImage currentImage;
std::list<Transaction *> transactions;

}i

The TransactionThread class maintains a list of transactions to process and
executes them one after the other in the background.

void TransactionThread::addTransaction(Transaction *transact)
{
QMutexLocker locker (&mutex) ;
transactions.push_back(transact);
if (!running())
start();

362 17. Multithreading

The addTransaction() function adds a transaction to the transaction queue
and starts the transaction thread if it isn’t already running.

void TransactionThread::run()

{

Transaction *transact;

for (;;) {
mutex.lock();
if (transactions.empty()) {
mutex.unlock() ;
break;

}

QImage oldImage = currentImage;
transact = *transactions.begin();
transactions.pop_front();
mutex.unlock() ;

TransactionStartEvent *event = new TransactionStartEvent;
event->message = transact->messageStr();
QApplication::postEvent (targetWidget, event);

QImage newImage = transact->apply(oldImage);
delete transact;

mutex.lock() ;
currentImage = newlmage;
mutex.unlock() ;

}
QApplication::postEvent (targetWidget,
new QCustomEvent (AllTransactionsDone));

}

The run() function goes through the transaction queue and executes each
transaction in turn (by calling apply() on them). All accesses to the transac-
tions and currentImage member variables are protected with a mutex.

When a transaction is started, we post a TransactionStart event to the target
widget (the Imagewindow). When all the transactions have finished processing,
we post an AllTransactionsDone event.

class Transaction

{

public:
virtual QImage apply(const QImage &image) = 0;
virtual QString messageStr() = 0;

Vi

The Transaction class is an abstract base class for operations that the user can
perform on an image. It has three concrete subclasses: FlipTransaction, Re-
sizeTransaction, and ConvertDepthTransaction. We will only review FlipTrans-
action; the other two classes are similar.

class FlipTransaction : public Transaction

{
public:

Communicating with the GUI Thread 363

FlipTransaction(Qt::Orientation orient);

QImage apply(const QImage &image);
QString messageStr();

private:
Qt::Orientation orientation;

}i

The FlipTransaction constructor takes one parameter that specifies the
orientation of the flip (Horizontal or Vertical).

QImage FlipTransaction::apply(const QImage &image)
{
return image.mirror(orientation == Qt::Horizontal,
orientation == Qt::Vertical);
}

The apply() function calls QImage::mirror() on the QImage it receives as
parameter and returns the resulting QImage.

QString FlipTransaction::messageStr()
{
if (orientation == Qt::Horizontal)
return QObject::tr("Flipping image horizontally...");
else
return QObject::tr("Flipping image vertically...");
}

The messagestr() returns the message to display in the status bar while the
operationisin progress. This function is called in ImageWindow: : customEvent (),
in the GUI thread.

For long-running operations, it might be desirable to report fine-grained
progress. We can achieve this by creating an additional custom event and
posting it when a certain percentage of the processing is completed.

Using Qt’s Classes in Non-GUI Threads

A function is said to be thread-safe when it can safely be called from different
threads simultaneously. If two thread-safe functions are called from different
threads on the same shared data, the result is always defined. By extension,
a class is said to be thread-safe when all of its functions can be called from
different threads simultaneously without interfering with each other, even
when operating on the same object.

Qt’s thread-safe classes are QThread, QMutex, QMutexLocker, QSemaphore, QThread-
Storage<T>, and QwWaitCondition. In addition, the following functions are
thread-safe: QApplication::postEvent(), QApplication::removePostedEvent (),
QApplication::removePostedEvents (), and QEventLoop: :wakeUp ().

Most of Qt’s non-GUI classes meet a less stringent requirement: They are
reentrant. A class is reentrant if different instances of the class can be used
simultaneously in different threads. However, accessing the same reentrant

364 17. Multithreading

object in multiple threads simultaneously is not safe, and such accesses should
be protected with a mutex. Reentrant classes are marked as such in the Qt ref-
erence documentation. Typically, any C++ class that doesn’t reference global
or otherwise shared data is reentrant.

QObject is reentrant, but none of Qt’s Q0bject subclasses are reentrant. One
consequence of this is that we cannot directly call functions on a widget
from a non-GUI thread. If we want to, say, change the text of a QLabel from a
non-GUI thread, we must post a custom event to the GUI thread, asking it to
change the text for us.

Deleting a Qobject with delete is not reentrant. To delete a Qobject from a
non-GUI thread, we can call Q0bject::deleteLater(), which posts a “deferred
delete” event.

QObject’s signals and slots mechanism can be used in any thread. When a
signal is emitted in one thread, the slots that are connected to it are called
immediately, and the execution takes place in the same thread—not in the
thread where the receiver object was created. This means that we can’t use
signals and slots to communicate with the GUI thread from other threads.

The gTimer class and the networking classes QFtp, QHttp, QSocket, and QSock-
etNotifier all depend on the event loop, so we cannot use them in non-GUI
threads. The only networking class available is QSocketDevice, the low-lev-
el wrapper for the platform-specific networking APIs. A common technique
is to use a synchronous QSocketDevice in a non-GUI thread. Some program-
mers find that it leads to simpler code than using QSocket (which works
asynchronously), and by working in a non-GUI thread, they don’t block the
event loop.

Qt’s SQL and OpenGL modules can also be used in multithreaded applica-
tions, but have their own restrictions, which vary from system to system. For
details, see http://doc.trolltech.com/3.2/sql-driver.html as well as the Q¢
Quarterly article “Glimpsing the Third Dimension”, available online at http:
//doc.trolltech.com/qq/qq06-glimpsing.html.

Many of Qt’s non-GUI classes, including QImage, QString, and the container
classes, use implicit or explicit sharing as an optimization technique. These
classes are reentrant except for their copy constructors and assignment oper-
ators. When a copy of an instance of these classes is taken, only a pointer to
the internal data is copied. This is dangerous if multiple threads attempt to
modify the data simultaneously. In such cases, a solution is to use the Qbeep-
Copy<T> class when performing an assignment to an instance of an implicitly
or explicitly shared class. For example:

QString password;
QMutex mutex;

void setPassword(const QString &str)
{
mutex.lock();
password = QDeepCopy<QString>(str);

Using Qt’s Classes in Non-GUI Threads 365

mutex.unlock() ;

}

Qt 4 will probably provide enhanced threading support. Among other things,
it is expected that the signal—slot mechanism will be extended to support con-
nections across threads, eliminating the need to use custom events for com-
municating with the GUI thread. It is also expected that non-GUI classes like
0Socket and QTimer will be available in non-GUI threads, and that QbeepCopy<T>
will no longer be necessary when copying instances of implicitly and explicitly
shared classes across threads.

* Interfacing with Native APIs
e Using ActiveX
* Session Management

Platform-Specific Features

In this chapter, we will look at some of the platform-specific options available
to Qt programmers. We begin by looking at how to access native APIs such as
the Win32 API on Windows, Core Graphics on Mac OS X, and Xlib on X11. We
then move on to explore Qt’s ActiveQt extension, showing how to use ActiveX
controls within Qt/Windows applications and how to create applications that
act as ActiveX servers. And in the last section, we explain how to make Qt
applications cooperate with the session manager under X11.

In addition to the features presented here, the Enterprise Edition of Qt in-
cludes the Qt/Motif extension to ease the migration of Motif and Xt applica-
tionsto Qt. A similar extension for Tcl/Tk applicationsis provided by froglogic,
and a Microsoft Windows resource converter is available from Klarilvdalens
Datakonsult. And for embedded development, Trolltech provides the Qtopia
application framework. See the following web pages for details:

® http://doc.trolltech.com/3.2/motif-extension.html

® http://www.froglogic.com/tq/

® http://www.klaralvdalens-datakonsult.se/?page=products&sub=knut
® http://www.trolltech.com/products/qgtopia/

Interfacing with Native APIs

Qt provides a comprehensive API that caters for most needs on all platforms.
But in some circumstances, we may want to use the underlying, platform-
specific APIs. In this section, we will show how to use the native APIs for the
different platforms supported by Qt to accomplish particular tasks.

On every platform, Qwidget provides a winId() function that returns the win-
dow ID (the HWND on Windows). QWidget also provides a static function called
find() that returns the gwidget with a particular window ID. We can pass

367

368 18. Platform-Specific Features

this ID to native API functions to achieve platform-specific effects. For ex-
ample, the following code uses winId() to make a QLabel semi-transparent on
Mac OS X using native Core Graphics functions*

#include <gapplication.h>
#include <glabel.h>
#include <gt_mac.h>

int main(int argc, char *argv[])

{
QApplication app(argc, argv);
QLabel *label = new QLabel ("Hello Qt!", 0);
app.setMainWidget (label) ;

CGSWindowRef winRef =
GetNativeWindowFromWindowRef ((WindowRef) label->winId());
CGSSetWindowAlpha (_CGSDefaultConnection(), winRef, 0.5);

label->show() ;
return app.exec();

}
Here’s how to achieve the same effect on Windows, using the Win32 API.:
#define _WIN32_WINNT 0x0501

#include <gapplication.h>
#include <gt_windows.h>

int main(int argc, char *argv(])

{
QApplication app(argc, argv);
QLabel *label = new QLabel("Hello Qt!", 0);
app.setMainWidget (label) ;

int exstyle = GetWindowLong(label->winId(), GWL_EXSTYLE);

exstyle |= WS_EX_LAYERED;

SetWindowLong (label->winId(), GWL_EXSTYLE, exstyle);

SetLayeredWindowAttributes (label->winId(), 0, 128,
LWA_ALPHA) ;

label->show() ;
return app.exec();

}

This code assumes that the platform is Windows 2000 or XP. If we wanted the
application to compile and run on older versions of Windows that don’t support
semi-transparency, we could use QLibrary to resolve the SetLayeredwWindowAt-
tributes symbol at run-time instead of at link-time:

typedef BOOL (__stdcall *PSetLayeredWindowAttributes)
(HWND, COLORREF, BYTE, DWORD);
PSetLayeredWindowAttributes pSetLayeredWindowAttributes =
(PSetLayeredWindowAttributes) QLibrary::resolve("user32",
"SetLayeredWindowAttributes");

*Qt 3.3 will probably provide a function to achieve this without resorting to native API calls.

Interfacing with Native APIs 369

if (pSetLayeredWindowAttributes) {
int exstyle = GetWindowLong(label->winId(), GWL_EXSTYLE);
exstyle |= WS_EX_LAYERED;
SetWindowLong (label->winId(), GWL_EXSTYLE, exstyle);
pSetLayeredWindowAttributes(label->winId(), 0, 128,
LWA_ALPHA) ;
}

Qt/Windows uses this technique internally to ensure that Qt applications
take advantage of advanced features such as native Unicode support and font
transformations where they are available, while still being able to run on old
Windows versions.

On X11, there is no standard way to achieve transparency. However, here’s
how we would modify an X11 window property:

Atom atom = XInternAtom(win->x11Display(), "MY_PROPERTY", False);
long data = 1;
XChangeProperty(win->x11Display(), win->winId(), atom, atom,

32, PropModeReplace, (unsigned char *)&data, 1);

Qt/Embedded differs from the other Qt versions in that it is implemented di-
rectly on top of the Linux frame buffer, with no native API in between. It also
providesits own window system, QWS, which can be configured by subclassing
Qt/Embedded-specific classes like QWSDecoration and QWSInputMethod. Another
difference of Qt/Embedded is that its size can be reduced by compiling out
unused classes and features. For more information about Qt/Embedded, see
http://www.trolltech.com/products/embedded/ and http://doc.trolltech.com/
3.2/winsystem.html.

If we want to use platform-specific code in an otherwise portable Qt applica-
tion, we can surround the native code with #if and #endif. For example:

#if defined(Q_WS_MAC)
CGSWindowRef winRef =
GetNativeWindowFromWindowRef ((WindowRef) label->winId());
CGSSetWindowAlpha (_CGSDefaultConnection(), winRef, 0.5);
#endif

Qt defines one of the following four window system symbols: _WS_WIN, Q_WS_
%11, Q_ws_MAC, and Q_ws_oQws. We must make sure to include at least one Qt
header before we use them in applications. Qt also provides preprocessor
symbols to identify the operating system:

® Q 0S_WIN32 ® Q_0S_DGUX ® Q OS_LINUX ® Q_0S_QNX6

® (O OS_WIN64 ® O _OS_DYNIX ® Q OS_LYNX ® Q OS_RELIANT
® O _OS_CYGWIN ® Q_OS_FREEBSD ® Q_OS_NETBSD ® Q_0S_SCo

® Q _OS_MAC ® Q_OS_HPUX ® Q_OS_OPENBSD ® Q_OS_SOLARIS
® Q OS_AIX ® (Q_OS_HURD ® Q OS_OSF ® Q _OS_ULTRIX

® Q_0S_BSDI ® Q_OS_IRIX ® Q_0S_ONX ® Q_OS_UNIXWARE

We can assume that at most one of these will be defined. For convenience, Qt
defines 9_0s_wIN when either Win32 or Win64 is detected, and 9_05_UNIX when

370 18. Platform-Specific Features

any Unix-based operating system (including Mac OS X) is detected. At run-
time, we can call QApplication::winVersion() or QApplication::macVersion() to
distinguish between different versions of Windows (95, 98, etc.) or Mac OS X
(10.0,10.1, etc.).

Several of Qt’s GUlI-related classes provide a platform-specific handle()
function that returns a low-level handle to the object. Figure 18.1 lists the
return type of handle() on different platforms.

Windows X11 Mac OS X Embedded
QCursor HCURSOR Cursor int int
QFont HFONT Font FMFontFamily [FontID
QPaintDevice HDC Drawable GWorldPtr N/A
QPainter HDC Drawable GWorldPtr N/A
QRegion HRGN Region RgnHandle void *
QSessionManager | N/A SmcConn N/A N/A

Figure 18.1. Platform-specific handle types

The owidget, QPixmap, QPrinter, and QPicture classes all inherit from QrPaint-
Device. On X11 and Mac OS X, handle() means the same thing as winId() on
a QWidget. On Windows, handle () returns the device context, whereas winId()
returns the window handle. Similarly, Qpixmap provides a hbm() function that
returns a bitmap handle (#HB1TM2P) on Windows.

On X11, gPaintDevice provides many functions that return various pointers or
handles, including x11Display() and x11Screen(). We can use these to set up
an X11 graphics context on a Qwidget or QPixmap, for example.

Qt applications that need to interface with other toolkits or libraries frequent-
ly need to access the low-level events (xEvents on X11, MsGs on Windows and
Mac OS X, gwsEvents on Qt/Embedded) before they are converted into QEvents.
We can do this by subclassing Qapplication and reimplementing the relevant
platform-specific event filter, one of winEventFilter(), x11EventFilter(), mac-
EventFilter (), and qwsEventFilter().

We can access the platform-specific events that are sent to a given Qwidget
by reimplementing one of winEvent (), x11Event (), macEvent (), and gwsEvent ().
This can be useful for handling certain types of events that Qt normally
ignores, such as joystick events.

For more information about platform-specific issues, including how to get
started with Qt/Embedded and how to deploy Qt applications on different
platforms, see http://doc.trolltech.com/3.2/winsystem.html.

Using ActiveX 371

Using ActiveX

Microsoft’s ActiveX technology allows applications to incorporate user inter-
face components provided by other applications or libraries. It is built on Mi-
crosoft COM and defines one set of interfaces for applications that use compo-
nents and another set of interfaces for applications and libraries that provide
components.

Qt/Windows Enterprise Edition provides the ActiveQt framework to seamless-
ly combine ActiveX and Qt. ActiveQt consists of two modules:

¢ The QAxContainer module allows us to use COM objects and to embed
ActiveX controls in Qt applications.

¢ The QAxServer module allows us to export custom COM objects and
ActiveX controls written using Qt.

Our first example will embed the Windows Media Player in a Qt application
using QAxContainer. The Qt application adds an Open button, a Play/Pause
button, a Stop button, and a slider to the Windows Media Player ActiveX
control.

Open... Pause Stop

Figure 18.2. The Media Player application

The application’s main window is of type PlayerWindow:

class PlayerWindow : public QWidget
{
Q_OBJECT
Q_ENUMS (ReadyStateConstants)
public:
enum PlayStateConstants { Stopped = 0, Paused = 1, Playing = 2 };
enum ReadyStateConstants { Uninitialized = 0, Loading = 1,
Interactive = 3, Complete = 4 };

PlayerWindow (QWidget *parent = 0, const char *name = 0);

protected:
void timerEvent (QTimerEvent *event);

372 18. Platform-Specific Features

private slots:
void onPlayStateChange(int oldState, int newState);
void onReadyStateChange(ReadyStateConstants readyState);
void onPositionChange(double oldPos, double newPos);
void sliderValueChanged(int newValue);
void openFile();

The PlayerWindow class inherits from Qwidget. The g_ENUMS () macrois necessary
to tell moc that the ReadyStateConstants type used in the onReadyStateChange ()
slot is an enum type.

private:
QAxWidget *wmp;
QToolButton *openButton;
QToolButton *playPauseButton;
QToolButton *stopButton;
QSlider *seekSlider;
QString fileFilters;
int updateTimer;

}i
In the private section, we declare a Qaxwidget * data member.

PlayerWindow: :PlayerWindow(QWidget *parent, const char *name)
: QWidget (parent, name)
{

wmp = new QAxWidget(this);
wmp->setControl (" {22D6F312-B0F6-11D0-94AB-0080C74C7E95} ") ;

In the constructor, we create a QaxwWidget object to encapsulate the Windows
Media Player ActiveX control. The QAxContainer module consists of three
classes: QAxObject encapsulates a COM object, oaxwWidget encapsulates an
ActiveX control, and QaxBase implements the core COM functionality for
QAxObject and QAxWidget

QObject QAxBase QWidget

I
I I |
QAXxObject QAxWidget

Figure 18.3. Inheritance tree for the QAxContainer module

We call setControl() on the gaxwidget with the class ID of the Windows Me-
dia Player 6.4 control. This will create an instance of the required compo-
nent. From then on, all the properties, events, and methods of the ActiveX
control are available as Qt properties, signals, and slots through the gaxwidget
object.

The COM data types are automatically converted into the corresponding Qt
types, as summarized in Figure 18.4. For example, an in-parameter of type
VARIANT BOOL becomes a bool, and an out-parameter of type VARIANT BOOL

Using ActiveX 373

becomes a bool &. If the resulting typeis a Qt class (QString, QDateTime, etc.), the
in-parameter is a const reference (for example, const QString &).

COM types Qt type
VARIANT_BOOL bool
char, short, int, long int
unsigned char, unsigned short, | uint
unsigned int, unsigned long
float, double double
CY Q_LLONG
BSTR QString
DATE QDateTime
OLE_COLOR QColor
SAFEARRAY (VARIANT) QValueList<QVariant>
SAFEARRAY (BYTE) QByteArray
VARIANT QVariant
IFontDisp * QFont
IPictureDisp * QPixmap

Figure 18.4. Relationship between COM types and Qt types

To obtain the list of all the properties, signals, and slots available in a QAx0b-
ject or QAxWidget with their Qt data types, call generateDocumentation() or use
Qt’s dumpdoc command-line tool, located in Qt’s extensions\activeqt\example
directory.

wmp->setProperty("ShowControls", QVariant(false, 0));
wmp->setSizePolicy(QSizePolicy: :Expanding,
QSizePolicy::Expanding) ;
connect (wmp, SIGNAL(PlayStateChange(int, int)),
this, SLOT(onPlayStateChange(int, int)));
connect (wmp, SIGNAL(ReadyStateChange(ReadyStateConstants)),
this, SLOT(onReadyStateChange(ReadyStateConstants)));
connect (wmp, SIGNAL(PositionChange(double, double)),
this, SLOT(onPositionChange(double, double)));

After calling setControl () in the PlayerWindow constructor, we call setProper-
ty() to set the ShowControls property of the Windows Media Player to false,
since we provide our own buttons to manipulate the component. The setprop-
erty() function is defined in Qobject and can be used both for COM properties
and for normal Qt properties. Its second parameter is of type Qvariant. Be-
cause some C++ compilers don’t support the bool type properly yet, the Qvari-
ant constructor that takes a bool also has a dummy int parameter. For types
other than bool, the conversion to Qvariant is automatic.

374 18. Platform-Specific Features

Next, we call setSizePolicy() to make the ActiveX control take all the avail-
able space in the layout, and we connect three ActiveX events from the COM
component to three slots.

The rest of the PlayerWindow constructor follows the usual pattern, except
that we connect some Qt signals to slots provided by the COM object (Play (),
Pause(), and Stop()).

Let’s leave the constructor and look at the timerEvent () function:

void PlayerWindow::timerEvent (QTimerEvent *event)
{
if (event->timerId() == updateTimer) {
double curPos = wmp->property("CurrentPosition").toDouble();
onPositionChange(-1, curPos);
} else {
QWidget::timerEvent (event) ;
}
}

The timerEvent () function is called at regular intervals while a media clip is
playing. We use it to advance the slider. This is done by calling property()
on the ActiveX control to obtain the value of the CurrentPosition property
as a Qvariant and calling toDouble() to convert it to a double. We then call
onPositionChange() to perform the update.

We will not review the rest of the code because most of it isn’t directly relevant
to ActiveX and doesn’t show anything that we haven’t covered already. The
code is included on the CD.

In the .pro file, we need this entry to link with the QAxContainer module:

LIBS += -lgaxcontainer

One frequent need when dealing with COM objects is to be able to call a COM
method directly (as opposed to connecting it to a Qt signal). The easiest way
to do this is to call dynamicCall() with the name and signature of the method
as first parameter and the arguments to the method as additional parameters.
For example:

wmp->dynamicCall ("TitlePlay(uint)", 6);

The dynamicCall () function takes up to eight parameters of type Qvariant and
returns a Qvariant. If we need to pass an IDispatch * or an IUnknown * this way,
we can encapsulate the component in a QAxObject and call asvariant() on it
to convert it to a Qvariant. If we need to call a COM method that returns an
IDispatch * or an IUnknown *, or if we need to access a COM property of one of
those types, we must use querySubObject () instead:

QAxObject *session = outlook.querySubObject("Session");
QAxObject *defaultContacts =
session->querySubObject ("GetDefaultFolder (OlDefaultFolders)",
"olFolderContacts") ;

Using ActiveX 375

If we want to call functions that have unsupported data types in their param-
eter list, we can use QAxBase: :queryInterface() to retrieve the COM interface
and call the function directly. We must call Release() when we have finished
using the interface.

If we often need to call such functions, we can subclass QAxObject or QAxWidget
and provide member functions that encapsulate the COM interface calls.
However, be aware that QAxObject and QAxWidget subclasses cannot define
their own properties, signals, and slots.

We will now review the QAxServer module. This module enables us to turn
a standard Qt program into an ActiveX server. The server can either be a
shared library or a stand-alone application. Servers built as shared libraries
are often called in-process servers, and stand-alone applications are called
out-of-process servers.

Our first QAxServer example is an in-process server that provides a widget
that shows a ball bouncing left and right. We will also see how to embed the
widget in Internet Explorer.

File Edit WVew Favorites Tools Help o

. A 0
Qﬁack - O - I_L| |EL| .'\J 7/) Search “;\';:’Fa\roribes

Address C:\gt-book-examples\bounceridema.html hd Go Links *

A

AxBouncer

Color: |blue
Speed: Normal
Radius: |15
w
@1 Done j My Computer

Figure 18.5. The AxBouncer widget in Internet Explorer

Here’s the beginning of the class definition of the AxBouncer widget:

class AxBouncer : public QWidget, public QAxBindable

{
Q_OBJECT
Q_ENUMS (Speed)
Q_PROPERTY (QColor color READ color WRITE setColor)
Q_PROPERTY (Speed speed READ speed WRITE setSpeed)
Q_PROPERTY (int radius READ radius WRITE setRadius)
Q_PROPERTY (bool running READ isRunning)

376 18. Platform-Specific Features

AxBouncer inherits from both Qwidget and QaxBindable. The QAxBindable class
provides an interface between the widget and an ActiveX client. Any Qwidget
can be exported as an ActiveX control, but by subclassing QAxBindable we can
notify the client when a property’s value changes, and we can implement COM
interfaces to supplement those already implemented by @AxServer.

When doing multiple inheritance involving a Qobject-derived class, we must
always put the Qobject-derived class first so that moc can pick it up.

We declare three read-write properties and one read-only property. The Q_
ENUMS () macro is necessary to tell moc that the speed type is an enum type. The
Speed enum is declared in the public section of the class.

public:
enum Speed { Slow, Normal, Fast };

AxBouncer (QWidget *parent = 0, const char *name = 0);

void setSpeed(Speed newSpeed) ;

Speed speed() const { return ballSpeed; }

void setRadius(int newRadius);

int radius() const { return ballRadius; }

void setColor(const QColor &newColor);

QColor color() const { return ballColor; }

bool isRunning() const { return myTimerId != 0; }
QSize sizeHint() const;

QAxAggregated *createAggregate();

public slots:
void start();
void stop();

signals:
void bouncing();

The AxBouncer constructor is a standard constructor for a widget, with a parent
and a name parameter. The QAXFACTORY DEFAULT () macro, which we will use to
export the component, expects a constructor with this signature.

The createAggregate() function is reimplemented from QaxBindable. We will
explain it in a moment.

protected:
void paintEvent (QPaintEvent *event);
void timerEvent (QTimerEvent *event);

private:
int intervalInMilliseconds() const;

QColor ballColor;
Speed ballSpeed;
int ballRadius;
int myTimerId;
int x;

int delta;

Using ActiveX 377

The protected and private sections of the class are the same as what we would
have in a standard Qt widget.

AxBouncer: : AxBouncer (QWidget *parent, const char *name)
: QWidget (parent, name, WNoAutoErase)
{
ballColor = blue;
ballSpeed = Normal;
ballRadius = 15;
myTimerId = 0;
x = 20;
delta = 2;
}

The 2xBouncer constructor initializes the class’s private variables.

void AxBouncer::setColor(const QColor &newColor)

{

if (newColor != ballColor && requestPropertyChange("color")) {
ballColor = newColor;
update() ;

propertyChanged("color") ;

}

The setcolor() function sets the value of the color property. It calls update ()
to repaint the widget.

The unusual part is the requestPropertyChange() and propertyChanged() calls.
These functions are inherited from QaxBindable and should ideally be called
whenever we change a property. The requestPropertyChange () asksthe client’s
permission to change a property, and returns true if the client allows the
change. The propertyChanged() function notifies the client that the property
has been changed.

The setsSpeed() and setRadius() property setters also follow this pattern,
and so do the start() and stop() slots, since they change the value of the
running property.

There is one interesting AxBouncer member function left:

QAxAggregated *AxBouncer::createAggregate()
{

return new ObjectSafetyImpl;
}

The createAggregate() function is reimplemented from QaxBindable. It allows
us to implement COM interfaces that the @AxServer module doesn’t already
implement or to bypass QAxServer’s default COM interfaces. Here, we do it
to provide the 10bjectSafety interface, which is used by Internet Explorer to
access a component’s safety options. This is the standard trick to get rid of
Internet Explorer’s infamous “Object not safe for scripting” error message.

Here’s the definition of the class that implements the IObjectSafety in-
terface:

378 18. Platform-Specific Features

class ObjectSafetyImpl : public QAxAggregated, public IObjectSafety

{
public:
long queryInterface(const QUuid &iid, void **iface);

QAXAGG_IUNKNOWN

HRESULT WINAPI GetInterfaceSafetyOptions(REFIID riid,
DWORD *pdwSupportedOptions, DWORD *pdwEnabledOptions);
HRESULT WINAPI SetInterfaceSafetyOptions(REFIID riid,
DWORD pdwSupportedOptions, DWORD pdwEnabledOptions) ;
i

The objectSafetyImpl classinherits both QAxAggregated and I0bjectSafety. The
QAxAggregated classis an abstract base class for implementations of additional
COM interfaces. The COM object that the QaxAggregated extends is accessible
through controllingUnknown (). This COM object is created behind the scenes
by the QAxServer module.

The QAXAGG_TUNKNOWN macro provides standard implementations of QueryInter-
face(), Addref (), and Release (). These implementations simply call the same
functions on the controlling COM object.

long ObjectSafetyImpl::queryInterface(const QUuid &iid, void **iface)
{
*iface = 0;
if (iid == IID_IObjectSafety)
*iface = (IObjectSafety *)this;
else
return E_NOINTERFACE;

AddRef () ;
return S_OK;
}

The queryInterface() function is a pure virtual function of QAxAggregated. Itis
called by the controlling COM object to give access to the interfaces provided
by the QaxAggregated subclass. We must return E_NOINTERFACE for interfaces
that we don’t implement and for 1Unknown.

HRESULT WINAPI ObjectSafetyImpl::GetInterfaceSafetyOptions(
REFIID riid, DWORD *pdwSupportedOptions,
DWORD *pdwEnabledOptions)

*pdwSupportedOptions = INTERFACESAFE_FOR_UNTRUSTED_DATA

| INTERFACESAFE_FOR_UNTRUSTED_CALLER;
*pdwEnabledOptions = *pdwSupportedOptions;
return S_OK;

}

HRESULT WINAPI ObjectSafetyImpl::SetInterfaceSafetyOptions(REFIID,
DWORD, DWORD)
{
return S_OK;

}

Using ActiveX 379

The GetInterfaceSafetyOptions() and SetInterfaceSafetyOptions() functions
are declared in 10bjectSafety. We implement them to tell the world that our
object is safe for scripting.

Let’s now review main. cpp:
#include <gaxfactory.h>
#include "axbouncer.h"

QAXFACTORY_DEFAULT (AxBouncer,
"{5e246laa-al3e8-4f7a-8b04-307459a4c08c} ™,
"{533af11f-4899-43de-8b7£-2ddf588d1015}™",
"{772cl4a5-a840-4023-b79d-19549ecelcd9} ",
"{dbcele56-70dd-4£74-85e0-95¢c65d862544d} ",
"{3f3db5e0-78ff-4e35-8a5d-3d3b96c83e09} ")

int main()
{
return 0;

}

The QAXFACTORY_DEFAULT () macro exports an ActiveX control. We can use it for
ActiveX servers that export only one control. Otherwise, we must subclass
QAxFactory and use a macro called QAXFACTORY_EXPORT (). The next example in
this section shows how to do it.

The first argument to QAXFACTORY DEFAULT() is the name of the Qt class to
export. This is also the name under which the control is exported. The other
five arguments are the class ID, the interface ID, the event interface ID, the
type library ID, and the application ID. We can use standard tools like guidgen
or uuidgen to generate these identifiers.

Because the server is a library, we don’t need a real main() function. We must
still provide a fake implementation to pacify the linker.

Here’s the .pro file for our in-process ActiveX server:

TEMPLATE = 1ib

CONFIG += activeqgt dll

HEADERS = axbouncer.h \
objectsafetyimpl.h

SOURCES = axbouncer.cpp \

main.cpp \

objectsafetyimpl.cpp
RC_FILE = gaxserver.rc
DEF_FILE = gaxserver.def

The gaxserver.rc and gaxserver.def files referred to in the .pro file are stan-
dard files that can be copied from Qt’s extensions\activegt\control directory.

The makefile or Visual C++ project file generated by gmake contains rules to
register the server in the Windows registry. To register the server on end user
machines, we can use the regsvr32 tool available on all Windows systems.

380 18. Platform-Specific Features

We can then include the Bouncer component in an HTML page using the
<object> tag:

<object id="AxBouncer"
classid="clsid:5e246laa-a3e8-4f7a-8b04-307459%9a4c08c">

The ActiveX control is not available. Make sure you have built and

registered the component server.

</object>

We can create buttons that invoke slots:

<input type="button" value="Start" onClick="AxBouncer.start()">
<input type="button" value="Stop" onClick="AxBouncer.stop()">

And we can manipulate the widget using JavaScript or VBScript just like any
other ActiveX control. See the demo. htnl file on the CD for a rudimentary page
that uses the ActiveX server.

Our last example is a scriptable Address Book application. The application
can serve as a standard Qt/Windows application or an out-of-process ActiveX
server. The latter possibility allows us to script the application using, say,
Visual Basic.

class AddressBook : public QMainWindow
{

Q_OBJECT
Q_PROPERTY (int count READ count)
public:
AddressBook (QWidget *parent = 0, const char *name = 0);
~AddressBook () ;

int count() const;

public slots:
ABItem *createEntry(const QString &contact);
ABItem *findEntry(const QString &contact) const;
ABItem *entryAt(int index) const;

Vi

The addressBook widget is the application’s main window. The property and
the slots it provides will be available for scripting.

class ABItem : public QObject, public QListViewItem
{
Q_OBJECT
Q_PROPERTY (QString contact READ contact WRITE setContact)
Q_PROPERTY (QString address READ address WRITE setAddress)
Q_PROPERTY (QString phoneNumber READ phoneNumber
WRITE setPhoneNumber)
public:
ABItem(QListView *listView);

void setContact
QString contact
void setAddress
QString address

onst QString &contact);
const { return text(0); }
onst QString &address);
const { return text(1l); }

— Q — Q

Using ActiveX 381

void setPhoneNumber (const QString &number);
QString phoneNumber () const { return text(2); }

public slots:
void remove();

}i

The ABItem class represents one entry in the address book. It inherits from
QListViewItem so that it can be shown in a QListView and from QObject so that
it can be exported as a COM object.

int main(int argc, char *argv(])
{
QApplication app(argc, argv);
if (!QAxFactory::isServer()) {
AddressBook addressBook;
app.setMainWidget (&addressBook) ;
addressBook.show() ;
return app.exec();
}
return app.exec();

}

In main(), we check whether the application is being run stand-alone or as
a server. The -activex command-line option makes it run as a server. If the
application isn’t run as a server, we create the main widget and show it as we
would normally do in any stand-alone Qt application.

In addition to -activex, ActiveX servers understand the following command-
line options:

® -regserver registers the server in the system registry.
® -unregserver unregisters the server from the system registry.

* -dumpidl file writes the server’s IDL to the specified file.

For the case where the application is run as a server, we need to export the
AddressBook and ABItenm classes as COM components:

QAXFACTORY_EXPORT (ABFactory,
"{2b2b6f3e-86cf-4c49-9d£5-80483b47£17b} ",
"{8e827b25-148b-4307-ba7d-23£275244818} ")

The QAXFACTORY_EXPORT () macro exports a factory for creating COM objects.
Since we want to export two types of COM objects, we cannot simply use
QAXFACTORY_DEFAULT() as we did in the previous example.

The first argument to QAXFACTORY_EXPORT () is the name of the QaxFactory class
that provides the application’s COM objects. The other two arguments are the
type library ID and the application ID.

class ABFactory : public QAxFactory

{

public:
ABFactory(const QUuid &lib, const QUuid &app);
QStringList featureList() const;

382 18. Platform-Specific Features

QWidget *create(const QString &key, QWidget *parent,
const char *name);
QUuid classID(const QString &key) const;
QUuid interfaceID(const QString &key) const;
QUuid eventsID(const QString &key) const;
QString exposeToSuperClass(const QString &key) const;
}i

The aBFactory class inherits QAxFactory and reimplements virtual functions
to export the AddressBook class as an ActiveX control and the 2BItemclass as a
COM component.

ABFactory::ABFactory(const QUuid &lib, const QUuid &app)
: QAxFactory(lib, app)

{

}

The aABFactory constructor simply forwards its two parameters to the base
class constructor.

QStringList ABFactory::featureList() const

{
return QStringList() << "AddressBook" << "ABItem";

}

The featureList () function returns a list of the COM components provided by
the factory.

QWidget *ABFactory::create(const QString &key, QWidget *parent,
const char *name)

{

if (key == "AddressBook")

return new AddressBook(parent, name);
else

return 0;

}

The create() function creates an instance of an ActiveX control. We return
a null pointer for ABTtem because we don’t want users to create ABItem objects.
Furthermore, the return type of create() is Qwidget *, which prevents it from
returning COM objects that aren’t ActiveX controls.

QUuid ABFactory::classID(const QString &key) const
{
if (key == "AddressBook")
return QUuid("{588141ef-110d-4beb-95ab-ee6ad78b5764}");
else if (key == "ABItem")
return QUuid("{bc82730e-5£39-4e5c-96be-461c2cd0d282}");
else
return QUuid();

}

The class1d() function returns the class ID for all the classes exported by
the factory.

Using ActiveX 383

QUuid ABFactory::interfaceID(const QString &key) const
{
if (key == "AddressBook")
return QUuid("{718780ec-b30c-4d88-83b3-79b3d9e78502}");
else if (key == "ABItem")
return QUuid("{c8bcl656-870e-48a9-9937-fbelceff8b2e}");
else
return QUuid();
}

The interfaceld() function returns the interface ID for the classes exported
by the factory.

QUuid ABFactory::eventsID(const QString &key) const
{
if (key == "AddressBook")
return QUuid("{0a06546f-9f02-4f14-a269-d6d56ffeb861}");
else if (key == "ABItem")
return QUuid("{105c6b0a-3fc7-460b-ae59-746d9d4b1724}");
else
return QUuid();

}

The events1d() function returns the event interface ID for the classes exported
by the factory.

QString ABFactory::exposeToSuperClass(const QString &key) const
{
return key;

}

By default, ActiveX controls expose not only their own properties, signals,
and slots to clients, but also those of their superclasses up to Qwidget. We
can reimplement the exposeToSuperClass() function to return the highest
superclass (in the inheritance tree) that we want to expose.

Here, we return the class name of the component (“AddressBook” or “ABItem”)
as the highest superclass to export, meaning that properties, signals, and slots
defined in AddressBook’s and ABItem’s superclasses will not be exported.

This is the . pro file for our out-of-process ActiveX server:

CONFIG += activeqt
HEADERS = abfactory.h \
abitem.h \

addressbook.h \
editdialog.h

SOURCES = abfactory.cpp \
abitem.cpp \
addressbook.cpp \
editdialog.cpp \
main.cpp

RC_FILE = gaxserver.rc

The gaxserver. rc file referred to in the .pro file is a standard file that can be
copied from Qt’s extensions\activegt\control directory.

384 18. Platform-Specific Features

Look in the example’s vb directory for a Visual Basic project that uses the
Address Book server.

This completes our overview of the ActiveQt framework. The Qt distribution
includes additional examples, and the documentation contains information
about how to build the QAxContainer and QAxServer modules and how to
solve common interoperability issues.

Session Management

When we log out on X11, some window managers ask us whether we want to
save the session. If we say yes, the applications that were running are au-
tomatically restarted the next time we log in, with the same screen positions
and, ideally, with the same state as they had when we logged out.

The X11-specific component that takes care of saving and restoring the
session is called the session manager. To make a Qt application aware of the
session manager, we must reimplement QaApplication::saveState() and save
the application’s state there.

End session for dominic

[¥ Save session for future loging

Logout I LCancel

Figure 18.6. Logging out on KDE

Windows 2000 and XP (and some Unix systems) offer a different mechanism,
called hibernation. When the user puts the computer into hibernation, the
operating system simply dumps the computer’s memory onto disk and reloads
it on startup. Applications do not need to do anything or even be aware that
this happens.

When the user initiates a shutdown, we can take control just before the
shutdown occurs by reimplementing QApplication::commitData (). This allows
us to save any unsaved data and to interact with the user if required. This
works the same way on both X11 and Windows.

We will explore session management by going through the code of a session-
aware Tic-Tac-Toe application. First, let’s look at the main() function:

int main(int argc, char *argv[])
{
Application app(argc, argv);
TicTacToe tic(0, "tic");
app.setTicTacToe(&tic);
tic.show();
return app.exec();

Session Management 385

We create an Application object. The Application class inherits from Qappli-
cationand reimplementsboth commitData() and saveState() to support session
management.

Next, we create a TicTacToe widget, make the Application object aware of it,
and show it. We have called the TicTacToe widget “tic”. We must give unique
names to top-level widgets if we want the session manager to restore the
windows’ sizes and positions.

l=[o[x]

Figure 18.7. The Tic-Tac-Toe application

Here’s the definition of the Application class:

class Application : public QApplication
{
Q_OBJECT
public:
Application(int &argc, char *argvl[]);

void setTicTacToe(TicTacToe *tic);
void commitData(QSessionManager &sessionManager);
void saveState(QSessionManager &sessionManager);

private:
TicTacToe *ticTacToe;
}i

The application class keeps a pointer to the TicTacToe widget as a private
variable.

void Application::saveState(QSessionManager &sessionManager)
{

QString fileName = ticTacToe->saveState();

QStringList discardCommand;
discardCommand << "rm" << fileName;
sessionManager.setDiscardCommand (discardCommand) ;

386 18. Platform-Specific Features

On X11, the savestate() function is called when the session manager wants
the application to save its state. The function is available on other platforms
as well, but it is never called. The QSessionManager parameter allows us to
communicate with the session manager.

We start by asking the TicTacToe widget to save its state to a file. Then we set
the session manager’s discard command. A discard command is a command
that the session manager must execute to delete any stored information
regarding the current state. For this example, we set it to

rm file

where fileisthe name of the file that contains the saved state for the session,
and rmis the standard Unix command to remove files.

The session manager also has a restart command. This is the command that
the session manager must execute to restart the application. By default, Qt
provides the following restart command:

appname -session id_key

The first part, appname, is derived from argv[0]. The id part is the session ID
provided by the session manager; it is guaranteed to be unique among dif-
ferent applications and among different runs of the same application. The
key part comes in addition to uniquely identify the time at which the state
was saved. For various reasons, the session manager can call saveState()
multiple times during the same session, and the different states must be dis-
tinguished.

Because of limitations in existing session managers, we need to make sure
that the application’s directory is in the PATH environment variable if we want
the application to restart correctly. In particular, if you want to try out the
Tic-Tac-Toe example for yourself, you must install it in, say, /usr/bin and
invoke it as tictactoe.

For simple applications, including Tic-Tac-Toe, we could save the state as an
additional command-line argument to the restart command. For example:

tictactoe -state 0X-X0-X-0

This would save us from storing the data in a file and providing a discard
command to remove the file.

void Application::commitData(QSessionManager &sessionManager)
{
if (ticTacToe->gameInProgress()
&& sessionManager.allowsInteraction()) {
int ret = QMessageBox::warning(ticTacToe, tr("Tic-Tac-Toe"),
tr("The game hasn’t finished.\n"
"Do you really want to quit?"),
QMessageBox::Yes | QMessageBox::Default,
QMessageBox::No | QMessageBox::Escape);
if (ret == QMessageBox::Yes)
sessionManager.release();

Session Management 387

else
sessionManager.cancel () ;

}

The commitData() function is called when the user logs out. We can reimple-
ment it to pop up a message box warning the user about potential data loss.
The default implementation closes all top-level widgets, which results in the
same behavior as when the user closes the windows one after another by click-
ing the X button in their title bars. In Chapter 3, we saw how to reimplement
closeEvent () to catch this and pop up a message box.

For the purposes of this example, we reimplement commitData() and pop up a
message box asking the user to confirm the log out if a game is in progress and
if the session manager allows us to interact with the user. If the user clicks
Yes, we call release() totell the session manager to continue logging out;if the
user clicks No, we call cancel () to cancel the log out.

i‘: The game hasn't finished. Do you really want to gquit?

Wes Jis] |

Figure 18.8. “Do you really want to quit?”

Now let’s look at the TicTacToe class:

class TicTacToe : public QWidget
{
Q_OBJECT
public:
TicTacToe(QWidget *parent = 0, const char *name = 0);

QSize sizeHint() const;
bool gameInProgress() const;
QString saveState() const;

protected:
void paintEvent (QPaintEvent *event);
void mousePressEvent (QMouseEvent *event);

private:
enum { Empty = ’'-', Cross = 'X’, Nought = 0’ };

void clearBoard();

void restoreState();

QString sessionFileName() const;

QRect cellRect(int row, int col) const;
int cellwidth() const { return width() /
int cellHeight() const { return height()

3; 1}
/ 3}

char board[3] [3];

388 18. Platform-Specific Features

int turnNumber;

}i

The TicTacToe class inherits from Qwidget and reimplements sizeHint(),
paintEvent (),and mousePressEvent (). It also provides the gameInProgress () and
saveState () functions that we used in Application.

TicTacToe: :TicTacToe (QWidget *parent, const char *name)
: QWidget (parent, name)
{

setCaption(tr("Tic-Tac-Toe"));

clearBoard() ;
if (gApp->isSessionRestored())
restoreState() ;

}

In the constructor, we clear the board, and if the application was invoked with
the -session option, we call the private function restoreState() to reload the
old session.

void TicTacToe::clearBoard()
{
for (int row = 0; row < 3; ++row) {
for (int col = 0; col < 3; ++col) {
board[row] [col] = Empty;
}
}
turnNumber = 0;

}
In clearBoard(), we clear all the cells and set turnNumber to O.

QString TicTacToe::saveState() const
{
QFile file(sessionFileName()) ;
if (file.open(IO_WriteOnly)) {
QTextStream out (&file);
for (int row = 0; row < 3; ++row) {
for (int col = 0; col < 3; ++col) {
out << board[row] [col];
}
}
}
return file.name();

}

In savestate(), we write the state of the board to disk. The format is straight-
forward, with X’ for crosses, ‘O’ for noughts, and -’ for empty cells.

QString TicTacToe::sessionFileName() const
{
return QDir::homeDirPath() + "/.tictactoe_ "
+ gApp->sessionId() + "_" + gApp->sessionKey();

Session Management 389

The sessionFileName() private function returns the file name for the current
session ID and session key. This function is used for both saveState() and
restoreState(). The file name is derived from the session ID and session key.

void TicTacToe::restoreState()
{
QFile file(sessionFileName());
if (file.open(IO_ReadOnly)) {
QTextStream in(&file);
for (int row = 0; row < 3; ++row) {
for (int col = 0; col < 3; ++col) {
in >> board[row] [col];
if (board[row] [col] != Empty)
++turnNumber;

}
}
repaint () ;

}

In restorestate(), we load the file that corresponds to the restored session and
fill the board with that information. We deduce the value of turnNumber from
the number of X’s and O’s on the board.

In the TicTacToe constructor, we called restoreState() if QApplication::is-
SessionRestored() returned true. In that case, sessionId() and sessionKey(
return the same values as when the application’s state was saved, and so ses-
sionFileName () returns the file name for that session.

Testing and debugging session management can be frustrating, because we
need to log in and out all the time. One way to avoid this is to use the standard
xsm utility provided with X11. The first time we invoke xsm, it pops up a session
manager window and a terminal. The applications we start from that termi-
nal will all use xsm as their session manager instead of the usual, system-wide
session manager. We can then use xsn’s window to end, restart, or discard a
session, and see if our application behaves as it should. For details about how
to do this, see http://doc.trolltech.com/3.2/session.html.

Appendices

A Note on Licensing
Installing Qt / Windows
Installing Qt/ Mac
Installing Qt/X11

Installing Qt

This appendix explains how to install Qt from the CD onto your system. The
CD has editions of Qt 3.2.1 for Windows, Mac OS X, and X11 (for Linux and
most versions of Unix). They all include SQLite, a public domain in-process
database, together with an experimental driver. The editions of Qt on the CD
are provided for your convenience. For serious software development, it is best
to download the latest version of Qt from http://www.trolltech.com/download/
or to buy a commercial version.

Trolltech also provides Qt/Embedded for building applications for Linux-
based embedded devices such as PDAs and mobile phones. If you are inter-
ested in creating embedded applications, you can obtain Qt/Embedded from
Trolltech’s download web page.

The example applications used in the book are on the CD in the examples di-
rectory. In addition, Qt provides many small example applications located in
the examples, tools\designer\examples, and extensions\activegt\examples sub-
directories.

A Note on Licensing

Qt is produced in three forms: free, non-commercial, and commercial. The
free and non-commercial editions are available free of charge; the commercial
editions must be paid for.

The software on the CD is suitable for creating applications for your own
educational and personal use.

If you want to distribute the applications that you create with a free or non-
commercial edition of Qt, you must comply with the specific terms and con-
ditions laid down in the licenses for the software you use to create the appli-
cations. For free editions, the terms and conditions include the requirement

393

394 A. Installing Qt

to use an open license—for example, the GNU General Public License (GPL).
Open licenses like the GPL give the applications’ users certain rights, includ-
ing the right to view and modify the source and to distribute the applications
(on the same terms). The non-commercial license has similar provisions. If you
want to distribute your applications without source code (to keep your code
private) or if you want to apply your own commercial license conditions to your
applications, you must buy commercial editions of the software you use to cre-
ate the applications. The commercial editions of the software allow you to sell
and distribute your applications on your own terms.

The CD contains a non-commercial version of Qt/Windows, a free edition of
Qt/Mac, and a free edition of Qt/X11.It also contains some other non-commer-
cial software, including Borland C++ Builder 5 and a trial version of Borland
C++ Builder 6. Each product on the CD has its own specific license conditions;
for example, the non-commercial Qt/Windows edition may not be redistribut-
ed, and its license isn’t compatible with the GPL. The full legal texts of the
licenses are included with the packages on the CD, along with information on
how to obtain commercial versions.

Installing Qt/Windows

When you insert the CD on a Windows machine, a setup program should start
automatically. If this doesn’t occur, run setup.exe located in the CD’s root
directory.

€ Install Ot Non-Commercial [ZJ@E\

(#) Qt Non-Commercial for Borland C++ Builder 5
() Gt Non-Commercial for Boand C++ Builder & Trial

() Gt Non-Commercial for Visual C++ 6
() Gt Non-Commercial for Visual C++ NET

Install Book Examples
[] Install Appropriate Compiler

Install Gt Non-Commercial

Figure A.1. Qt/Windows Non-Commercial installer

The setup program will ask you which compiler you want to use for Qt de-
velopment. If you have chosen a Borland compiler, check the Install Appropriate
Compiler option if you also want to install the compiler. If you check the Install
Book Examples option, the example applications shown in this book will be in-
stalled in c:\Qt\3.2.1\book (assuming C:\Qt\3.2.1 is the location where you
installed Qt).

If you choose to install a Borland compiler, note that there may be a delay
between the completion of the Borland installation and the start of the
Qt installation.

Installing @t/ Windows 395

In the Qt installer, check the Set QTDIR option. If you are using Microsoft
Visual C++, you must specify Visual Studio’s path so that Qt can integrate
itself with the development environment.

If you are installing on a Windows 95, 98, or ME system, the compilation step
is skipped due to technical limitations in the operating system. The setup pro-
gram writes the steps needed to build Qt into a batch file and puts a shortcut
to the batch file in the Start menu. To build Qt, simply click this shortcut.

Some Windows versions may require a reboot to set the environment vari-
ables. If you installed Borland C++ Builder 5, you must update your PATH en-
vironment variable to include the Borland executable directory (for example,
C:\Borland\Bcc55\bin). You must also create two configuration files in the Bor-
land executable directory. The first file must be called bcc32.cfg and contain
the lines

-I"C:\Borland\Bcc55\include"
-L"C:\Borland\Bcc55\1ib"

The second file must be called i1ink32.cfg and contain the line
-L"C:\Borland\Bcc55\1ib"

If you installed the Borland compiler in a non-default location, you must
replace C:\Borland\Bcc55 with the appropriate path.

Installing Qt/Mac

The Mac OS X installation is done from a terminal. To launch a terminal, look
in Applications/Utilities with Finder.

If your system does not have a C++ compiler installed, you must install one
yourself before installing Qt. An easy option is to install GCC from Apple’s
Developer Tools CD.

1. Unpack the archive file from the CD:

cd /Developer
tar zxf /Volumes/Qt\ 3\ Programming/mac/gqt-mac-free-3.2.l.tar.gz

The archive is unpacked into /Developer/qt-mac-free-3.2.1.

2. Create a symlink from this directory to /Developer/qt:

In -sf gt-mac-free-3.2.1 gt

3. Set up certain environment variables for Qt.

The variables are set differently depending on which shell you are using.
For example, if your user name is kelly, you can find out which shell you
are using with the finger command:

finger kelly

396 A. Installing Qt

If your shell is bash, ksh, zsh, or sh, add the following lines to the .profile
file in your home directory:

QTDIR=/Developer/qt

PATH=$QTDIR/bin: $PATH
MANPATH=$QTDIR/doc/man: $MANPATH
DYLD_LIBRARY_PATH=$QTDIR/1ib:$DYLD_LIBRARY_PATH
export QTDIR PATH MANPATH DYLD_LIBRARY PATH

If your shell is csh or tcsh, add the following lines to your . 1login file:

setenv QTDIR /Developer/gt

setenv PATH $QTDIR/bin:$PATH

setenv MANPATH $QTDIR/doc/man:$MANPATH

setenv DYLD_ LIBRARY PATH $QTDIR/1ib:$DYLD LIBRARY PATH

If you encounter “undefined variable” problems, change the last two lines
above to these:

setenv MANPATH $QTDIR/doc/man
setenv DYLD_ LIBRARY PATH $QTDIR/1ib

After you have done this, the settings must be activated. The easiest way
to do this is to close the terminal window and then open a new terminal
window.

4. Execute the configure tool in the new terminal with your preferred
options to build the Qt library and the tools supplied with it:

cd $QTDIR
./configure

You can run ./configure -help to get a list of configuration options. For
example, you can use the -thread option to create a threaded version of
the library.

5. Type make.

6. Make your applications launchable from Finder.

If you built Qt using the -static option, your executables will contain
the Qt library and can be run from Finder automatically. Otherwise,
your executables will need to use the Qt library on your system. This is
achieved by creating two symlinks:

In -sf $QTDIR/1ib/libgt.3.dylib /usr/lib
1n -sf $QTDIR/1ib/libqui.l.dylib /usr/lib

If you built a multithreaded version of Qt, replace 1ibgt.3.dylib with
libgt-mt.3.dylib in the first 1n command above.

Creating these links may require administrator access; if this is the case,
run the commands preceded by sudo:

sudo 1n -sf $QTDIR/1ib/libgt.3.dylib /usr/lib

Installing Qt/Mac 397

sudo 1n -sf $QTDIR/1ib/libqui.l.dylib /usr/lib

If you don’t have administrator access or just want to install Qt locally,
use these links instead:

1n -sf $QTDIR/1ib/libgt.3.dylib $HOME/lib
1n -sf $QTDIR/1ib/libqui.l.dylib $HOME/1ib

As mentioned above, if you built a multithreaded version of Qt, replace
libgt.3.dylib with libgt-mt.3.dylib

If you want to customize how you install Qt or if you encounter problems with
installing Qt, refer to the 1NSTALL file in $QTDIR for more information.

Installing Qt/X11

To install Qt on X11, you may need to be root, depending on the permissions
of the directory where you choose to install Qt.

1. Change directory to where you want to install Qt. For example:

cd /usr/local

2. Unpack the archive file from the CD:

cp /cdrom/x11/gt-xl11-free3.2.1.tar.gz .
gunzip qt-xll-free-3.2.1.tar.gz
tar xf gt-xll-free-3.2.1.tar

This will create the directory gt-xl11-free-3.2.1, assuming that your
CD-ROM is mounted at /cdrom.

3. Set up certain environment variables for Qt.

The variables are set differently depending on which shell you are using.
For example, if your user name is gregory, you can find out which shell
you are using with the finger command:

finger gregory

If your shell is bash, ksh, zsh, or sh, add the following lines to the .profile
file in your home directory:

QTDIR=/usr/local/qt-x11-free-3.2.1
PATH=$QTDIR/bin: $PATH
MANPATH=$QTDIR/doc/man: $MANPATH

LD_LIBRARY PATH=$QTDIR/1ib:$LD_LIBRARY_ PATH
export QTDIR PATH MANPATH LD_LIBRARY_ PATH

If your shell is csh or tcsh, add the following lines to your . 1login file:

setenv QTDIR /usr/local/qt-xll-free-3.2.1

setenv PATH $QTDIR/bin:$PATH

setenv MANPATH $QTDIR/doc/man:$MANPATH

setenv LD_LIBRARY PATH $QTDIR/1ib:$LD_LIBRARY PATH

398 A. Installing Qt

If you encounter “undefined variable” problems, change the last two lines
above to these:

setenv MANPATH $QTDIR/doc/man
setenv LD_LIBRARY PATH $QTDIR/1ib

Irrespective of which shell you use, if you install Qt on AIX, replace all
occurrences of LD_LIBRARY_PATH with LIBPATH. And if you install Qt on
HP-UX, replace LD_LIBRARY_PATH with SHLIB_PATH.

After you have done this, you must either login again or re-source the
.profile or .login file before continuing.

4. Execute the configure tool with your preferred options to build the Qt
library and the tools supplied with it:

cd $QTDIR
./configure

You can run ./configure -help to get a list of configuration options. For
example, you can use the -thread option to create a threaded version of
the library.

5. Type make.

If you want to customize how you install Qt or if you encounter problems with
installing Qt, refer to the TnsTALL file in $QTDIR for more information.

Qt’s Class Hierarchy

Qt 3.2 provides more than 400 public classes. The class hierarchy depicted
on the following pages presents the majority of them, but omits those that are
more specialized and those that are infrequently used.

399

400

B. Qt’s Class Hierarchy

Y9

at} [QObject |—~—{QWidget |
N—{GBrush | [GEvent I~ [QAccel 1
I—[QCursor | [QIMEvent |—/ [QAction |-—)
H QKeySequence | [QKeyEvent |-—/ [QApplication |-—/
[—»[QPainter | [QHideEvent }—1| [acanvas |-—/
\—»[QPen] |QDropEvent }—/ [QClipboard |-—/ \—>
[\—»|@SyntaxHighlighter | [QPaintEvent }—/ [aDns —
W ’QTildEvent I-—/ \ QDragObject |-—/
[—»[QThread | [QMoveEvent 1 [QEventLoop |-—/
[—»[QToolTip | [@ShowEvent }—| [QProcess —
—s[QWhatsThis] [QCloseEvent }—/| [QServerSocket +—
—»[QCanvasitem [QTimerEvent | |@SessionManager |-—/
[QCanvasText [QFocusEvent +— [asignal |-—/
[QCanvasSprite [QWheelEvent }—/ [QSignalMapper —1
gc Y la }— [QSocket — N——[osider |
QCanvasEllipse | [QResizeEvent }—/ [@Sound —1
{QCanvasLine] [QCustomEvent }— [QTimer +—
Qc: [ac }— [QTranslator —

QCanvasSpline
QCanvasRectangle

QStyleSheet
QStyle

QCommonStyle

[Qurioperator

I._/

QWindowsStyle

QNetworkOperation

QWindowsXPStyle | QMotifStyle

QNetworkProtocol |+

QValidator

QPlatinumStyle [QFtp [QDoubleValidator |
[asaistyle [QHttp [QIntValidator |
[QCDEStyle [QLocalFs |QRegExpValidator |
[QStylePlugin | [@sqlField | A QLayout

I._/

QSqlFieldinfo

QSplashScreen

QScrollView

s 2 (3] 2 18 (8] [5

g 3] (& 18 |&)

= 12 |3 |= |E =

ol |1& 12| 1B |& 2

12 |8 g *
o =

~—»| QCanvasView

o |2 |2
clc |e
@ g |
@[S |2
g 15l IS
x H g

QTextEdi

extEdit

QSgqlEditorFactory QSgqlRecord | [@SgIDatabase |-—/
[@sa] QSgqlRecordinfo | [QSqlDriver | —
[@SqlResult | QSgqlCursor [GSqlForm |/
[@SqlPropertyMap | QSgqlindex | [QDataBrowser fb——
[@SqlDriverPlugin | [QsqlQuery [QDataView

QTable

i

B. Qt’s Class Hierarchy

401

[QWidgetFactory | [QAccessible] [QMemArray |
—]QCheckBox | [QWwidgetPlugin | [QAsciiCache | [QMenuData | QByteArray :j
[QAsynciO | [QMetaObject | [QPointArray
\—[QPushButton | [@XmlAttributes | [QcChar | [QMetaProperty | [QBitArray |
—»[QRadioButton | | @XmIContentHandler || |QColor | |QMovie] {QcCstring |
|@XmIDecIHandler || [QColorGroup | [QMimeSource] [QMimeSourceFactory |
—»[QWizard] [@XmIDTDHandler | [QDataStream] [QMutex] [QMutexLocker]
|—s[QTabDialog | [@XmIEntityResolver | [QDate | [QPaintDevice }
[—s|QFileDialog | | @XmiLexicalHandler | | QDateTime | | QPaintDeviceMetrics| | QPrinter
[\—s| QFontDialog | |@XmiLocator] [QDeepCopy | |QPair | |QPicture
H QInputDialog | [a t] [QDir] [QPalette] QPixmap
{—s[QColorDialog | [@XmiReader | {QDomNode | [QPixmapCache | q QBitmap |
[GFilelnfo] [QPoint]
I—s[QErrorMessage | [QDomAttr }—| [QFont] [QPtrCi } ~
—»[QProgressDialog | [QDomEntity || [QFontDatabase | [QPtrQueue | [QDict —
™ [QDomElement J—/| [QFontinfo | | QPtrStack] |QCache —
[QGrid }— [QDomDocument |/ [QFontManager | [QRangeControl | QPtrList +—
[QLabel }—| [QDomCharacterDataj— [QFontMetrics | [QRect | [QIntDict —
—{asL | [QRegExp | [QPtrDict +—/
QVBox] [QGLFormat 1 [QGLColormap | [QRegion | [QAsciiDict +—
[asplitter }—] [QGLContext }— [QGuardedPtr | [@Semaphore | [QPtrVector —
[QHostAddress | [QSettings | QObjectList |
[QiconSet | [@SimpleRichText | [QSortedList |
[Gimage | [asize | [QValueList
[QPopupMenu }—1 [GFie] [QimageFormatPlugin | [@sizePolicy | [QstringList
[QProgressBar }—1 [aBuffer] [QImagelo | |@string | |QValueStack
| QLCDNumber J—/ [@SocketDevice] |QIntCache | [QConstString | |QvalueVector]
QIODevice] [QTextCodec] [Qun]
QD f — [asty I | [QLibrary | [QTextCodecPlugin | [QUrlinfo]
C: QToolBar | [QCustomMenultem | [QMap | [QTextStream | [Qvariant |
[QlconViewltem | [QListBoxitem [QTime | [@WMatrix |
| QListViewltem | QListBoxText B | QAsciiCachelterator | | QPtrDictiterator] [QHButtonGroup |
| QCheckListitem D [QListBoxPixmap | |QCachelterator | [QMapiterator | [QVButtonGroup |
[QTableltem [QLayoutitem [QIntC: | [QvalueLi | Q p
|QCheck B [@ B |QAsciiDictiterator || | QPtrListiterator] [QHGroupBox
|@ComboTableltem [QWidgetitem | | QDictiterator | | QintDictiterator] [QVGroupBox

Index

% (percent sign), 52, 53, 255
& (ampersand), 14, 156

/ (slash), 53, 63, 238

\ (backslash), 53, 238

€ (euro symbol), 320, 327

A

ABFactory
class definition, 381
ABFactory(), 382
classID(), 382
create(), 382
eventsID(), 383
exposeToSuperClass (), 383
featureList (), 382
interfaceID(), 383
ABItem class, 380-381
abort ()
QFtp, 289
QPrinter, 208
about ()
MainWindow, 62
QMessageBox, 62
aboutQt () (QApplication), 46
absolute positioning, 136
accelerator keys, 14, 23, 44, 165, 341
See also shortcut keys
accept ()
ArtistForm, 269
CdForm, 278
QCloseEvent, 53, 157, 159, 352
QDialog, 25,59
QDragEnterEvent, 216,219
actions, 44-45, 56, 155-156, 341, 360
activateWindow() (MainWindow), 157
activated()
QAction, 44
QSocketNotifier, 305
active() (Qralette), 105
activeEditor () (MainWindow), 155
active handles, 198
active MDI window, 154, 155
ActiveQt, 347, 371-384
active window, 59, 105
activeWindow() (QWorkspace), 155

403

ActiveX, 371-384
-activex option, 381
add()

QToolTip, 339, 340

QWhatsThis, 340, 346
addArgument () (QProcess), 240
addBindvalue () (QSqlQuery), 263
addBox () (Diagramview), 189
addcd() (MainForm), 273
addChild() (QScrollview), 145
addColumn ()

QDataTable, 268

QListView, 312
addDatabase () (QSglDatabase), 262, 264
addItem() (Diagramview), 190
addLayout () (QBoxLayout), 15—16
addLine() (Diagramview), 189
addMultiCellWidget () (QGridLayout), 139
addNewArtist () (CdForm), 279
AddRef () (IUnknown), 378
addSeparator () (QToolBar), 47
addStretch() (QBoxLayout), 14
addTo() (QAction), 46, 152
addTransaction()

ImageWindow, 360

TransactionThread, 361
addwidget ()

QBoxLayout, 14

QScrollview, 150

QStatusBar, 57
AddressBook class, 380
Address Book example, 380—-384
adjust () (PlotSettings), 130
adjustAxis() (PlotSettings), 131
adjustSize() (Qwidget), 118
advanceProgressBar () (TripPlanner), 293
Age example, 68
AIX, 369
alignment, 57, 90, 129
alignment () (Cell), 90
allocated memory. See new operator
alpha channel, 101, 106
Alt key, 14, 164
ampersand (‘&’), 14, 156
AndrOP, 178
angles, 126, 177
animations, 165, 198, 244

404

Index

append ()
QPtrList<T>, 252
QString, 254
QValueVector<T>, 245
appendChild() (QDomNode), 316
Apple Roman, 323
Application
class definition, 385
commitData(), 386
saveState(), 385
application settings, 63—64, 143, 152,
258
apply() (FlipTransaction), 363
Arabic, 320
arcs, 176
areaPoints() (DiagramLine), 197
arg() (QString), 52-54, 255, 325
argc and argv parameters, 3, 160, 386
arguments to an external program, 240
arrays, 253—-254
See also vectors
ArtistComboBox
class definition, 280
ArtistComboBox (), 280
artistId(), 281
populate(), 281
refresh(), 280
setArtistId(), 281
ArtistForm
class definition, 267
invocation, 279
ArtistForm(), 268
accept (), 269
beforeDeleteArtist(), 269
beforelnsertArtist(), 270
primeInsertArtist(), 270
reject(), 269
artistId() (ArtistComboBox), 281
ASCII, 222, 235, 254, 264, 319-323,
326
ascii() (QString), 257
aspect ratio, 183, 200
Assistant. See Qt Assistant
assistants. See wizards
asynchronous operations, 283, 289, 293,
303, 304, 364
at()
QIODevice, 294
0SqlQuery, 263
atomicity, 350
attributes (XML), 310, 315
auto-delete, 252, 268
auto-generated fields, 270
auto-populate, 268

autoRecalculate() (Spreadsheet), 71
AxBouncer
class definition, 375
AxBouncer (), 377
createAggregate(), 377
setColor(), 377

B

background color, 105,112, 113, 118,
178

background mode, 118, 128, 178
backslash (\), 53, 238
Backtab key, 164
BDiagPattern, 177
beep () (QApplication), 83
beforeDelete() (QDataTable), 269, 279
beforeDeleteArtist () (ArtistForm), 269
beforeDeleteTrack () (CdForm), 279
beforeInsert () (QDataTable), 270, 279
beforeInsertArtist() (ArtistForm), 270
beforeInsertTrack() (CdForm), 279
begin() (container classes), 246
beginGroup () (QSettings), 63
Bengali, 320
BevelJoin, 177
Bézier curves, 176, 178, 186
Big5-HKSCS, 323
big-endian, 231
binary I/0, 77-80, 227-234, 291
binary_search() (STL), 247
bind() (QSocketDevice), 304
bindvalue() (QSqlQuery), 263
bitBlt(), 114, 121-122 185
bit depth. See color depth
bitmaps, 178

See also QPixmap
blinking, 165
BLOB (SQL), 282
block-oriented protocols, 291, 301
blocking operations. See synchronous

operations

BMP files, 43
Borland C++ Builder, 394-395
bottomDock () (QMainWindow), 43
Bouncer example, 375-380
boundingRect ()

DiagramBox, 196

QCanvasItem, 197

Qpainter, 207
box layouts, 15,23, 137
bringToFront () (Diagramview), 191
browse() (ConvertDialog), 240

Index

405

brushes, 176178
BSDI, 369
bubble help. See tooltips
buddies, 14, 23
building applications, 4
built-in dialogs, 36—-38
built-in widgets, 33-36, 69, 99
busy cursor, 78
busy indicators, 293
button groups, 34
buttons

checkboxes, 34

mouse, 107, 225

push, 5, 14, 23, 34

radio, 34
byte order, 231
bytesAvailable() (QSocket), 300

C

calculateField() (0SqlCursor), 274, 282

canDecode ()
CellDrag, 223
QUriDrag, 216
canReadLine() (QSocket), 301
cancel () (QSessionManager), 387
canceled()
QProgressBar, 289
QProgressDialog, 289
canvases, 185-198, 200
cap styles, 177
captions, 7, 151
Carbon API, 63
carriage return, 234, 236
Cartesian coordinate system, 105
cascade () (QWorkspace), 156
case sensitivity, 256, 321
cd() (QFtp), 285, 286
CD Collection example, 266—282
CdForm
class definition, 275
invocation, 273

CdForm(), 276
init(), 277
accept (), 278

addNewArtist (), 279
beforeDeleteTrack(), 279
beforelInsertTrack(), 279
reject (), 279
CD Tables example, 272
CDE style, 8
Cell
class definition, 88

Cell (continued)
inheritance tree, 70
cell(), 89
alignment (), 90
evalExpression(), 92
evalFactor(), 93
evalTerm(), 93
formula(), 90
setDirty(), 90
setFormula(), 89
text(),90
value(), 91

cell() (Spreadsheet), 74

CellDrag
class definition, 221
CellDrag(), 221
canDecode (), 223
decode (), 223
encodedData (), 222
format (), 221
toCsv(), 222
toHtml (), 223

Cell Drag example, 221-224

cellWidget () (QTable), 77

central widget, 43, 69-70, 142, 152
See also main widget

centralWidget () (QMainWindow), 43

character encodings, 222, 224, 234, 317,

319-323
character strings, 254258
characters () (SaxHandler), 310
charmap files, 323
checkboxes, 34
checkmarks, 45, 156
child() (Qobject), 33
child dialogs, 51
child layouts, 15, 138
child objects, 16, 26
child processes, 239
child widgets
of a layout widget, 6, 16
of a scroll view, 150
of a splitter, 140
of a widget stack, 144
of an invisible widget, 119
of an MDI workspace, 152
Chinese, 320
chords, 176
circles. See ellipses
circular buffer, 354
class documentation, 8—10
classID() (ABFactory), 382
className () (QObject), 20

406

Index

clear()
container classes, 248
QStatusBar, 340
Spreadsheet, 73
clearBoard() (TicTacToe), 388
clearCell() (QTable), 73
clearCurve() (Plotter), 120
clicked()
MyWhatsThis, 345
QPushButton, 6, 163
client—server applications, 291-301
ClientSocket
class definition, 298
ClientSocket (), 299
generateRandomTrip (), 300
readClient (), 299
clip region, 129, 178
clipboard() (QApplication), 81,224
clipboard operations, 80—82, 154, 155,
192-193, 224-226
clipper, 150
close()
QFtp, 285
Qwidget, 14, 53
closeActiveWindow() (QWorkspace), 156
closeAllWindows ()
QApplication, 66
QWorkspace, 156
closeConnection() (TripPlanner), 296
closeEvent ()
Editor, 159
MainWindow, 53, 157
Qwidget, 40, 387
ThreadForm, 352
code editor (Qt Designer), 25-27, 31
CODEC entry (.pro files), 335
codecForLocale() (QTextCodec), 321
codecForName () (QTextCodec), 322
codecs, 317, 321-323
collection classes. See container classes
collisions() (QCanvas), 190, 200
color depth, 101,113
color dialog, 36
colorGroup () (Qwidget), 105,121
colormaps, 113
See also QGLColormap
colors, 5, 36, 100, 102
columns
in a data table, 268
in a list view, 312
in a table, 74
COM, 371-384
comboboxes, 36
comma-separated values (CSV), 223

commandFinished() (QFtp), 285
command-line of an external program,
240
command-line options, 3, 8, 160, 386
commandStarted () (QFtp), 285
commercial editions of Qt, 393-394
commit () (QSglDatabase), 264, 269, 278
commitData ()
Application, 386
QApplication, 384
common dialogs, 36-37
compiling applications, 4
compiling Qt, 394-398
compression of data, 232
compression of events, 104
CONFIG entry (.pro files), 214, 352—-353
configuration data, 63-64, 258
configuring Qt, 352, 394-398
connect () (Q0bject), 6-8, 14, 18-20
connectToHost ()
QFtp, 285, 286
QSocket, 293
connectToServer () (TripPlanner), 293
connected() (QSocket), 293
connecting to a database, 261-262,
264-265
connectionClosed() (QSocket), 297,299
connectionClosedByServer ()
(TripPlanner), 297
connection editor (@t Designer), 24
connectionTimeout () (TripPlanner), 297
console applications, 237, 241, 353
const iterators, 246
constructors
copy, 243
default, 243, 246
flags parameter, 66, 117, 147, 158
parent and name parameters, 12
consumer—producer model, 354-358
container classes
as return values, 248
auto-delete, 252
dictionaries, 252—253
iterators, 246
lists, 247-249, 252
maps, 249-251
memory arrays, 253—254
pointer-based, 251-253
Qt vs. STL, 243
strings, 254258
type of objects stored, 243
variants, 89, 100, 258-260, 262
vectors, 243-247, 251-252
container widgets, 3, 34

Index

407

contains () (QRect), 108
contentsContextMenuEvent ()
(Diagramview), 189
contentsDragEnterEvent () (ProjectView),
219
contentsDropEvent () (ProjectView), 219
contentsMouseDoubleClickEvent ()
(Diagramview), 191
contentsMouseMoveEvent ()
DiagramView, 190
ImageEditor, 149
ProjectView, 218
contentsMousePressEvent ()
DiagramView, 190
ImageEditor, 149
ProjectView, 218
contextMenuEvent ()
MainWindow, 48
QDataTable, 270

QWidget, 40
context menus, 40, 48, 151, 189, 267,
270
controllingUnknown () (QAxAggregated),
378

controls. See widgets
convert () (ConvertDialog), 240
convertDepth() (QImage), 103
ConvertDepthTransaction class, 362
ConvertDialog

init(), 239

browse (), 240

convert (), 240

processExited(), 241

updateOutputTextEdit (), 241
convertSeparators () (QDir), 53,238
convex polygons, 183
coordinate system

of a painter, 105-106, 150, 178-179

of a scroll view, 149

of a widget, 105, 107, 125
copy ()

DiagramView, 192

MyTable, 225

QMemArray<T>, 254

Spreadsheet, 80
copyAvailable()

MainWindow, 1567

QTextEdit, 154
copy constructors, 243
copy on write. See implicit sharing
CopyROP, 127,178
Core Graphics API, 368
cornerWidget () (QScrollview), 145
CP874, 323

CP125x, 323
create()

ABFactory, 382

IconEditorPlugin, 110

QWidgetFactory, 33
createActions()

DiagramView, 189

MainWindow, 44, 330
createAggregate () (AxBouncer), 377
createConnection(), 261
createConnections (), 282
createEditor()

MainWindow, 154

Spreadsheet, 75
createElement () (QDomDocument), 316
createlLanguageMenu () (MainWindow), 331
createMenus () (MainWindow), 46, 330
createOneConnection(), 281
createStatusBar () (MainWindow), 56
createTextNode () (QDomDocument), 316
createToolBars () (MainWindow), 47
createWindowsMenu () (MainWindow), 156
critical() (QMessageBox), 50
CRLF. See line-ending conventions
CrossPattern, 177
CSV, 223
Ctrl key, 107, 164
Cube

class definition, 209

Cube(), 210

draw(), 211

faceAtPosition(), 213

initializeGL(), 210

mouseDoubleClickEvent (), 212

mouseMoveEvent (), 212

mousePressEvent (), 212

paintGL(), 211

resizeGL(), 210
Cube example, 209-214
currentCdChanged () (MainForm), 274
currentChanged() (QDataTable), 274
currentDateTime () (QDateTime), 182
currentDirPath() (QDir), 238
currentFormula () (Spreadsheet), 75
currentIten property (QListBox), 145
currentItem() (QComboBox), 61
currentLocation() (Spreadsheet), 75
currentRecord() (QDataTable), 273
currentThread() (QThread), 358
cursor (mouse), 78, 123, 124, 190
Cursor type, 370
cursors (SQL), 265-266
CurveData typedef, 115
custom canvas items, 187

408

Index

custom dialogs, 11-18,21-33
custom drag types, 220-224
customEvent () (ImageWindow), 360
custom events, 164, 359-363
custom properties, 100, 280
custom styles, 122
custom widgets, 69, 97-132, 278
cut ()
DiagramView, 192
MainWindow, 155
Spreadsheet, 80
cyclic connections, 8, 21
Cygwin, 369

D

DashDotDotLine, 176
DashDotLine, 176
DashLine, 176
data()
QClipboard, 225
QDomText, 315
QMap<K, T> iterators, 250
data-aware widgets, 275
data compression, 232
data-entry widgets, 36
dataReceived() (WeatherStation), 305
data structures. See container classes
data tables, 266—274
dataTransferProgress()
QFtp, 289
QHttp, 291
database() (QSglDatabase), 264
databases
built-in drivers, 262, 393
connecting to, 261-262, 264-265
navigating result sets, 262, 265
transactions, 264
value binding, 263-264
Datagram (QSocketDevice), 303, 304
date, 182
date/time editors, 36, 328
DB2 (IBM), 262
.dcf files (Qt Assistant), 347
decode ()
CellDrag, 223
QTextDrag, 220, 224
decodeLocalFiles () (QUriDrag), 217
deep copy, 254, 259, 364
.def files, 379
Default (QMessageBox), 50
default buttons, 14, 23, 50
default constructors, 243, 246

default database connection, 265
default field values, 270
deferred deletion, 299, 300, 364
#define directive, 12
DEFINES entry (.pro files), 326
degrees, 126, 177
del()
DiagramView, 193
0SglCursor, 266
Spreadsheet, 82
delayedCloseFinished() (QSocket), 299,
300
delete operator, 16, 48—49, 64-66, 83,
300, 364
DELETE statement, 265
deleteCd() (MainForm), 273
deleteLater() (QObject), 299, 300, 364
delta() (QWheelEvent), 126
Dense?Pattern, 177
deriving. See subclassing
Designer. See Qt Designer
destructors, 17, 195
detach() (QImage), 103
Devanagari, 320
device coordinates, 178-179
DG/UX, 369
DiagCrossPattern, 177
Diagram example, 186-198
DiagramBox
class definition, 187
DiagramBox (), 195
~DiagramBox(), 195
boundingRect (), 196
drawShape (), 196
setText (), 196
DiagramLine
class definition, 188
DiagramLine(), 196
~DiagramLine(), 196
areaPoints (), 197
drawShape (), 197
offset (), 188
DiagramView
class definition, 186
DiagramView(), 188
addBox (), 189
addItem(), 190
addLine(), 189
bringToFront (), 191
contentsContextMenuEvent (), 189
contentsMouseDoubleClickEvent (),
191
contentsMouseMoveEvent (), 190
contentsMousePressEvent (), 190

Index

409

DiagramView (continued)
copy (), 192
createActions (), 189
cut (), 192
del(), 193
paste(), 193
properties(), 194
sendToBack (), 192
setActiveItem(), 194
showNewItem(), 194
dialogs
built-in, 36-38
creating in code, 12-13
creating using @t Designer, 21-33
invoking, 58—62
meaning of parent, 51
modal, 59-60
modeless, 58
passing data to and from, 61-62
dials, 36
dictionaries, 252253
See also maps
directories, 53, 237-238
disabled() (Qralette), 105
disabled actions, 155
disabled widgets, 14, 105, 170
discard command, 386
disconnect () (Q0bject), 19, 20
display context (OpenGL), 210
Divehi, 320
division by zero, 93, 103
DNS lookup. See qDns
dock areas, 43, 150-152
documentElement () (QDomDocument), 314
documentTitle() (QTextBrowser), 344
documentation, 8-10, 342-347
DOM, 307, 312-317
DomParser
class definition, 313
DomParser (), 313
parseEntry(), 314
DOM Parser example, 313-316

done()
QFtp, 284
QHttp, 290

DotLine, 176
double buffering, 112—-114, 185
double-click, 191, 212
doubly linked lists, 247-249, 252
Downloader
class definition, 286
Downloader (), 286
ftpDone(), 287
listInfo(), 287

Downloader example, 286—-289
drag() (QDragObject), 219
drag and drop

accepting drops, 215-220

built-in drag types, 219

custom drag types, 220—224

originating drags, 217-219

start distance, 218
dragEnterEvent () (QWidget), 216
Drag File example, 215-217
drag handles, 198
dragLeaveEvent () (QWidget), 217
dragMoveEvent () (QWidget), 217
dragObject () (MyTable), 224
draw()

Cube, 211

OvenTimer, 183, 199

QCanvasItem, 200
drawActiveHandle(), 195
drawArc() (QPainter), 176
drawChord() (QPainter), 176
drawContents () (ImageEditor), 148
drawConvexPolygon() (QPainter), 183
drawCubicBezier () (QPainter), 176
drawCurves () (Plotter), 129
drawEllipse() (QPainter), 176, 177
drawGrid() (Plotter), 128
drawImagePixel () (IconEditor), 106
drawLine() (Qpainter), 104,176, 184
drawLineSegments () (QPainter), 176
drawPie() (QPainter), 176, 177
drawPoints () (QPainter), 176
drawPolygon() (QPainter), 176, 183
drawPolyline() (QPainter), 130, 176
drawPrimitive() (QStyle), 122
drawRect () (Qpainter), 121,176,184
drawRoundRect () (QPainter), 176
drawShape ()

DiagramBox, 196

DiagramLine, 197
drawText () (Qpainter), 129, 167, 179,

184

Drawable type, 370
Drawing class, 230
drill-down, 261
driver () (QSglDatabase), 264
drivers

database, 262, 393

printer, 199
dropEvent () (QWidget), 217
druids. See wizards
.dsp files (Visual Studio), 5
dumpdoc, 373
-dumpidl option, 381

410

Index

duration() (OvenTimer), 182
DYLD_LIBRARY_PATH environment
variable, 395

dynamicCall () (QAxBase), 374
dynamic_cast<T>(), 188
dynamic dialogs, 33

See also shape-changing dialogs
dynamic memory. See new operator
dynamic menus, 54-56, 156-157
DYNIX, 369

E

Easter eggs, 170
Edit menus, 80—-84
editions of Qt, 393-394

Editor
class definition, 158
Editor(), 158

closeEvent (), 159
maybeSave (), 159
newFile(), 159
open(), 159
save(), 1569
setCurrentFile(), 160
sizeHint (), 160
Editor example, 152-161
editor widgets, 36
ellipses, 176, 177, 186
Embedded Linux, 367-370
emit pseudo-keyword, 17
Employee class, 20-21
empty() (container classes), 246, 248
empty strings, 257
emulated look and feel, 8, 122
enableClipper() (QScrollview), 150
enableOkButton() (GoToCellDialog), 25
enabled widgets. See disabled widgets
encodedData () (CellDrag), 222
encodings, 222, 224, 234, 317, 319-323
end() (container classes), 246
endDocument () (QXmlContentHandler), 308
endEdit () (Spreadsheet), 76
endElement () (SaxHandler), 311
endGroup () (QSettings), 63
endian, 231
endsWith() (QString), 256
entryHeight () (PrintWindow), 206
entryList() (QDir), 238
environment variables
DYLD_LIBRARY_PATH, 395
LD_LIBRARY_PATH, 397
LIBPATH, 397

environment variables (continued)
MANPATH, 395, 397
PATH, 4, 347, 386, 395, 397
QTDIR, 111,395, 397
SHLIB_PATH, 397
erase()
1list<T>, 247
vector<T>, 247
erase color, 112,113,118, 128
error ()
Gallery, 229
QSocket, 293
TripPlanner, 297
error dialog, 37
errorString()
QFile, 78,79, 229
QXmlErrorHandler, 310
Esc key, 50
Escape (QMessageBox), 50
escape() (QStyleSheet), 202, 223
escapexml (), 317
EUC-JP, 323
EUC-KR, 323
euro symbol (‘€’), 320, 327
evalExpression() (Cell), 92
evalFactor() (Cell), 93
evalTerm() (Cell), 93
event ()
Journalview, 333
MainWindow, 333
QObject, 164, 170
eventFilter () (QObject), 169, 170
event loop, 171, 283, 289, 300, 301, 359,
364
event types
close, 40, 53, 157, 159, 352, 387
context menu, 40, 48, 189, 270
custom, 164, 359-363
drag enter, 216, 219
drag leave, 217
drag move, 217
drop, 217, 219
hide, 168
key press, 125, 164, 168
key release, 164
language change, 333
layout direction change, 170
locale change, 332-333
mouse double-click, 191, 212
mouse move, 107, 123, 149, 190, 212,
218
mouse press, 106, 107, 123, 149, 182,
190, 212, 218
mouse release, 124, 226

Index

411

event types (continued)
paint, 104, 113, 121, 167, 182, 185
resize, 122, 136
show, 167
timer, 165-168, 173, 303, 374
wheel, 126
events, 4, 48
compared with signals, 163
compression, 104
custom types, 164, 359-363
filtering, 168-171, 370
handling, 104, 163-168, 170, 370
pending, 173
platform-specific, 370
propagation, 165,171,216
eventsID() (ABFactory), 383
examples
Address Book, 380-384
Age, 6-8
Bouncer, 375-380
CD Collection, 266—282
CD Tables, 272
Cell Drag, 221-224
Cube, 209-214
Diagram, 186-198
DOM Parser, 313-316
Downloader, 286-289
Drag File, 215-217
Editor, 152-161
Find, 11-18, 58
Go-to-Cell, 21-28, 59
Hello, 3-5
Hex Spin Box, 97-99, 108
Icon Editor, 99-111
Image Converter, 239-241
Image Editor, 146-150
Image Pro, 359-363
Image Space, 237-238
Media Player, 371-374
Oven Timer, 180-185
Plotter, 114-132
Project Chooser, 217-220
Quit, 5-6
SAX Handler, 308-312
Semaphores, 354-356
Sort, 28-32, 60
Spreadsheet, 39—68, 69-95
Threads, 349-353
Tic-Tac-Toe, 384-389
Ticker, 165-168
Trip Planner, 292298
Trip Server, 292, 298-301
Wait Conditions, 356—-358
Weather Balloon, 302-304

examples (continued)

Weather Station, 302, 304-305
ExcludeUserInput (QEventLoop), 172
exclusive actions, 45
exclusive buttons, 34
exec ()

QApplication, 3,171, 359

QDialog, 59

QPopupMenu, 48

QSqglQuery, 262
exists()

QDir, 238

QFile, 238
expandedTo () (0Size), 113
Expanding (QSizePolicy), 118,139
explicit sharing, 103, 254, 364
exporting plugins, 111
exposeToSuperClass () (ABFactory), 383
Extensible Markup Language. See

XML
extension dialogs, 28—-32
external programs, 239

F

faceAtPosition() (Cube), 213
FALSE constant, 14
fatalError() (SaxHandler), 311
FDiagPattern, 177
featureList () (ABFactory), 382
file dialog, 37, 50-51
File menus, 45, 46, 49-56, 65
fileName() (QFileInfo), 53
files
attributes, 238
binary I/0, 77-80, 227-234, 291
directory separator, 53, 238
dragging, 217
encodings, 321-322
image formats, 43, 239
name filters, 50, 238, 239
reading and writing XML, 307-317
recently opened, 46, 54-56
text I/0, 234-237, 321-322
traversing directories, 237-238
uploading and downloading,
283-291
fill patterns, 176-178, 177
fillRect () (QPainter), 106
Film class, 244, 249-250
filters
for events, 168-171, 370
for file names, 50, 238, 239

412

Index

filters (continued)
on a data table, 274
find()
MainWindow, 58
map<K, T>, 250
QMemArray<T>, 254
QWidget, 367
STL, 246, 248
Find example, 11-18, 58
findClicked() (FindDialog), 17
FindDialog
class definition, 12, 13
invocation, 58, 59
FindDialog(), 13-15
findClicked(), 17
findNext (), 12
findPrev(), 12
FindFileDialog class, 135-138
findNext ()
FindDialog, 12
Spreadsheet, 83
findPrev()
FindDialog, 12
Spreadsheet, 84
first member (map<k, T> iterators), 130,
250
first() (QSqlQuery), 263
firstChild() (QDomNode), 316
Fixed (QSizePolicy), 139
fixed size, 140
flags
setting after construction, 158
setting in constructor, 66, 117
setting on a scroll view, 147
WDestructiveClose, 66, 158, 344
WGroupLeader, 343
WNoAutoErase, 112-113,117, 118, 147,
185
WStaticContents, 101, 108, 112, 147
flags parameter, 66, 117, 147, 158
FlatCap, 177
flicker, 104, 112, 168, 185
flipHorizontally() (ImageWindow), 360
FlipTransaction
class definition, 362
apply(), 363
messageStr(), 363
floating dock windows, 150—152
FMFontFanily type, 370
focus, 14,24, 118,122, 164, 171
focusNextPrevChild() (Qwidget), 169,
170
focus policies, 118
focus rectangle, 122

folders, 237-238
font dialog, 36
fontMetrics () (QWidget), 160, 167
Font type, 370
fonts, 36, 137, 167, 176, 183, 320
foreign keys, 266, 271, 277, 281
form editor. See Q¢ Designer
format () (CellDrag), 221
formula()
cell, 90
Spreadsheet, 74
forward declarations, 12, 13
frame buffer, 369
frames, 34
FreeBSD, 369
free edition of Qt, 393-394
froglogic, 367
fromAscii() (QString), 326
fromMimeSource () (QPixmap), 44
FTP, 283289
ftpDone ()
Downloader, 287
MainWindow, 285
functors, 87

G

Gallery
class definition, 228
error(), 229

getData(), 232
ioError(), 229
loadBinary(), 230
loadText (), 235
readFromStream(), 231
readFromString(), 237
saveBinary(), 228
saveToString (), 236
setData(), 232
writeToStream(), 229

GB2312, 323

GB18030, 323

GBK, 323

GCC, 18, 395

General Public License, 394

generateDocumentation() (QAxBase), 373

generateId(), 270

generateRandomTrip() (ClientSocket),

300

geometric shapes, 176, 185

geometries, 136

get ()
QFtp, 284, 285, 287

Index

413

get () (continued)

QHttp, 290
getColor() (QColorDialog), 212
getData() (Gallery), 232
getFile() (MainWindow), 290
GetInterfaceSafetyOptions()

(Objectsafety), 378
getOpenFileName() (QFileDialog), 50-51,
159, 240

getPricelList() (MainWindow), 284
getSaveFileName() (QFileDialog), 52
GIF files, 43
globalPos () (QContextMenuEvent), 48
GNU General Public License, 394
GNU Hurd, 369
goToCell () (MainWindow), 59
GoToCellDialog

creating using Q¢ Designer, 21-28

invoking, 59

init(), 25

enableOkButton(), 25
GoToCellDialogBase class, 27
GoToCellDialogImpl class, 27
Go-to-Cell example, 21-28, 59
GPL, 394
graphics, 175-214
Graphics Gems, 132
gravity. See WStaticContents
grayed out widgets, 14
Greek, 320
grid layouts, 29, 30, 137, 138
group () (IconEditorPlugin), 110
group boxes, 34
GUI builder. See Q¢ Designer
GUI thread, 359
Gujarati, 320
Gurmukhi, 320
GWorldptr type, 370

H

handle() (GUI classes), 370
hasAcceptableInput () (QLineEdit), 25
hasFeature() (QSqlDriver), 264
hasLocalData () (QThreadStorage<T>), 358
hasPendingEvents () (QApplication), 173
hashes. See container classes

HBITMAP type, 370

HCURSOR type, 370

HDC type, 370

head() (QHttp), 290

header files, 13

heap memory. See new operator

heavy processing, 171, 349
Hebrew, 320
height () (QImage), 108
Hello example, 3-5
help, 47, 339-347
HelpBrowser
class definition, 342, 347
HelpBrowser (), 343
showPage (), 344, 347
updateCaption(), 344
HexSpinBox
class definition, 97
integration with @t Designer,
108-109
HexSpinBox (), 98
mapTextToValue(), 98
mapValueToText (), 98
Hex Spin Box example, 97-99, 108
HFONT type, 370
hibernation, 384
hidden widgets, 4, 31, 59, 119, 139
hide()
QCanvasItem, 195, 196
Qwidget, 31,119
hideEvent () (Ticker), 168
highlighted() (QListBox), 145
Home key, 164
homeDirPath() (QDir), 238
HorPattern, 177
horizontalHeader () (QTable), 73
horizontal layouts, 6, 15, 23, 137
horizontalScrollBar() (QScrollView), 73,
145
host addresses, 303
host names, 303
hourglass cursor, 78
HP-UX, 369
HRGN type), 370
HTML, 5, 8, 35, 202-203, 223, 341,
342-347, 380
HTTP, 283, 289-291
httpDone() (MainWindow), 290
Hurd, 369
HWND type, 367

I

TANA, 219
IBM-850, 323
IBM-866, 323
IBM DB2, 262
IconEditor

class definition, 100

414

Index

IconEditor (continued)
integration with @t Designer,
109-111
IconEditor(), 101
drawImagePixel (), 106
mouseMoveEvent (), 107
mousePressEvent (), 106
paintEvent (), 104
setIconImage(), 103
setImagePixel(), 107
setPenColor (), 102
setZoomFactor (), 103
sizeHint (), 102
Icon Editor example, 99-111
IconEditorPlugin
class definition, 109
create(), 110
group(), 110
iconSet(), 111
includeFile(), 110
isContainer(), 110
keys (), 110
toolTip(), 111
whatsThis (), 111
iconSet () (IconEditorPlugin), 111
icon views, 33, 35
icons, 43, 44, 50, 62, 219, 328
See also images
ID
of a COM component, 372, 379, 382
of a menu item, 55
of a session, 386
of a timer, 167
of a widget, 367
of an FTP command, 285
of an HTTP request, 291
IDL, 381
idle processing, 173
#if directive, 369
#ifndef directive, 12
ignore() (QCloseEvent), 53, 157, 159
Ignored (QSizePolicy), 140
image collections, 44
Image Converter example, 239-241
ImageEditor
class definition, 146
ImageEditor (), 147
contentsMouseMoveEvent (), 149
contentsMousePressEvent (), 149
drawContents (), 148
resizeContents (), 148
setImage(), 148
setImagePixel (), 149
Image Editor example, 146-150

ImageMagick, 239
Image Pro example, 359-363
imageSpace(), 237
Image Space example, 237-238
ImageWindow
ImageWindow (), 360
addTransaction(), 360
customEvent (), 360
flipHorizontally(), 360
images
alpha channel, 101
color depth, 101,113
distributing with the application, 43
file formats, 43, 239
icons, 43, 44, 50, 62, 219, 328
QImage VS. QPixmap, 113
storing in a database, 282
IMAGES entry (.pro files), 44, 118
implicit sharing, 249, 258-259, 364
in-process database. See SQLite
inactive() (Qpalette), 105
includeFile() (IconEditorPlugin), 110
information() (QMessageBox), 50
inheriting. See subclassing
initial thread, 359
initializeGL() (Cube), 210
input dialogs, 37
input methods, 320
insert()
list<T>, 247
QPtrList<T>, 252
QSqglCursor, 265
QString, 256
vector<T>, 247
INSERT statement, 263, 265
insertItem()
QComboBox, 32, 281
QMenuBar, 47
QPopupMenu, 46, 332
insertSeparator()
QMenuBar, 47
QPopupMenu, 46, 55
installEditorFactory() (QDataTable),
282
installEventFilter() (QObject), 169,
170
installPropertyMap ()
QDataTable, 282
QSqglForm, 278
installing Qt, 394-398
intensive processing, 171, 349

Interface Definition Language (IDL),
381

interfaceID() (ABFactory), 383

Index

415

interfaces (COM), 375, 377
internationalization, 319-337

Internet Assigned Numbers Authority,
219

Internet Explorer, 375
Internet protocols
DNS. See qbns
FTP, 283289
HTTP, 289-291
TCP, 291-301
UDP, 301-305
inter-process communication, 239-241
introspection, 20
invisible widgets, 4, 31, 59, 119, 139
/0
binary, 77-80, 227-234, 291
devices, 78, 285, 289, 290, 291
text, 234—237
ioError() (Gallery), 229
10_ReadOnly, 80
I10_Translate, 234
I0_WriteOnly, 78
I0bjectSafety, 377-379
IP addresses, 303
IPC, 239-241
Irix, 369
isActive() (QSqlQuery), 263
isContainer() (IconEditorPlugin), 110
isDigit() (QChar), 321
isEmpty () (QString), 257
isLetter() (QChar), 321
isLetterOrNumber () (QChar), 321
isMark() (QChar), 321
isModified() (QTextEdit), 160
isNull() (QString), 257
isNumber () (QChar), 321
isPrint() (QChar), 321
isPunct () (QChar), 321
isSessionRestored() (QApplication), 388,
389
isSpace() (QChar), 321
isSymbol () (QChar), 321
isvalid() (Qvariant), 90
ISO 8859-1, 222, 319-323
ISO 8859-15, 222, 327
ISO 8859-x, 323
IS0 10646 UCS-2, 323
item views, 35, 73
iterators
const vs. non-const, 246
dereferencing, 246
for dictionaries, 253
for lists, 248
for pointer lists, 252

iterators (continued)

for vectors, 246

incrementing and decrementing, 246
IUnknown

AddRef (), 378

QueryInterface(), 378

Release(), 375,378

J

Japanese, 320
JavaScript, 380
JIS7, 323
join() (QStringList), 257
join styles, 177
JournalView
JournalvView(), 333
event (), 333
retranslateStrings(), 334
JPEG files, 43

K

Kannada, 320
KeepSize (QSplitter), 142
key ()

QKeyEvent, 164

QMap<K, T> iterators, 250
key events, 164-165
keyPressEvent ()

Plotter, 125

Qwidget, 164, 168
keyReleaseEvent () (QWidget), 164
keyboard accelerators, 14, 23, 44, 165,

341

keyboard focus. See focus
keyboard shortcuts, 44, 156
keys

Alt, 164

Backtab, 164

Ctrl, 107, 164

Esc, 50

Home, 164

Menu, 40

Shift, 107, 164

Space, 168

Tab, 118, 164
keys ()

IconEditorPlugin, 110

QMap<K, T>, 251
Khmer, 320
killTimer () (QObject), 168

416

Index

Klarilvdalens Datakonsult, 367
KOI8-R, 323
KO1I8-U, 323
Korean, 320

L

labels, 3, 35
language change events, 333
Language menus, 329, 331-332
languages supported by Qt, 320
Lao, 320
last () (QSqlQuery), 263
lastError () (QSglQuery), 263
lastWindowClosed() (QApplication), 65
Latin-1, 254, 264, 319-323
latinl()
QChar, 320
QString, 257
Latin-9. See ISO 8859-15
launching external programs, 239
layout direction, 15, 170, 327, 328
layout managers, 15, 137
alternatives to, 122-123, 136137
box, 15, 23, 137
grid, 29, 30, 137, 138
in Qt Designer, 23, 29, 30, 139
margin and spacing, 138
nesting, 15, 138
size hints, 32, 57,102, 103, 118, 137,
139-140
size policies, 102, 118, 139
spacer items, 15
layout widgets, 6, 16
LCD numbers, 35
LD_LIBRARY_PATH environment variable,
397
left () (QString), 255
leftDock () (QMainWindow), 43
left mouse button, 107, 123, 190, 212,
218
length() (QString), 257
LIBPATH environment variable, 397
LIBS entry (.pro files), 33, 346, 374
licensing, 393-394
line editors, 36
line-ending conventions, 234, 236
line-oriented protocols, 291, 301
Linguist. See Qt Linguist
link errors, 18
linked lists, 247-249, 252
Linux, 367-370, 397-398
list() (QFtp), 285, 286, 287

list<T>, 247

iterators, 248

erase(), 247

insert (), 247

push_back (), 248
list boxes, 33, 35
listInfo()

Downloader, 287

QFtp, 287
list views, 33, 35
lists, 247-249, 252
little-endian, 231
load() (QTranslator), 327—-328
loadBinary() (Gallery), 230
loadFile() (MainWindow), 51
loadText () (Gallery), 235
localData() (QThreadStorage<T>), 358
LocalDate, 328
local host, 293, 303
locale() (QTextCodec), 327
localeAwareCompare () (QString), 328
locale change events, 332—-333
localization. See internationalization
lock () (QMutex), 353, 354
logical coordinates, 178-179, 185
login() (QFtp), 285, 286
logout, 384, 387
look and feel, 8, 122
lower ()

QChar, 321

QString, 256
lrelease, 334-337
“LTR” marker, 327
lupdate, 323, 325-326, 334-337
LynxOS, 369

M

macEvent () (Qwidget), 370
macEventFilter() (QApplication), 370
Mac OS X, 367-370, 395-397
Mac style, 8, 122
macVersion() (QApplication), 370
MailClient
MailClient(), 141
readSettings(), 143
writeSettings(), 143
main()
argc and argv parameters, 3, 160
for ActiveX applications, 379, 381
for database applications, 262

for internationalized applications,
326

Index

417

main() (continued)
for MDI applications, 67, 160
for SDI applications, 65
for simple example, 3

MainForm
class definition, 271
MainForm(), 272
addcd(), 273
currentCdChanged(), 274
deletecd(), 273

main layout, 15

main thread, 359

main widget, 4
See also central widget

MainWindow
class definition, 40, 215, 284
MainwWindow(), 42, 66, 153, 284, 289,

329

about (), 62
activateWindow(), 157
activeEditor(), 155
closeEvent (), 53, 157
contextMenuEvent (), 48
copyAvailable(), 157
createActions(), 44, 330
createEditor(), 154
createLanguagelMenu (), 331
createMenus (), 46, 330
createStatusBar (), 56
createToolBars (), 47
createWindowsMenu (), 156

cut(), 155
event (), 333
find(), 58

ftpDone(), 285
getFile(), 290
getPricelist(), 284
goToCell(),59
httpDone (), 290
loadFile(), 51
maybeSave (), 49
newFile(), 49, 65, 154
open(), 50, 154
openRecentFile(), 55
readSettings (), 63
retranslateStrings(), 331
save(), 51,155
saveAs (), 52
saveFile(), 51
setCurrentFile(), 53
sort (), 60—62
spreadsheetModified(), 57
strippedName(), 53
switchToLanguage (), 332

MainWindow (continued)
updateCellIndicators(), 57
updateMenus (), 155
updateModIndicator(), 157
updateRecentFilelItems (), 54
writeSettings(), 63

main windows, 40-43, 64-67, 69

makefiles, 4, 17-18

Malayalam, 320

manhattanLength() (QPoint), 218

MANPATH environment variable, 395, 397

manual layout, 122-123, 136

map<k, T>, 250
iterators, 130, 250
find(), 250
operator(] (), 250

mapTextToValue() (HexSpinBox), 98

mapValueToText () (HexSpinBox), 98

maps, 249-251

margin (in layouts), 7, 138

master—detail views, 271

Maximum (QSizePolicy), 139

maximum size, 137, 140

maybeSave (
Editor, 159
MainWindow, 49

MD], 67,152-161

Media Player example, 371-374

Members tab (@t Designer), 28, 239, 292

memory arrays, 253—254

memory management, 16—-17, 48—49,

66

menuBar () (QMainWindow), 43, 47

Menu key, 40

menus
bars, 43, 47
context, 40, 48, 151, 189, 267, 270
creating, 44-47
disabling items, 155
dynamic, 54-56, 156-157
toggle items, 45, 156

message () (QStatusBar), 51, 340

message boxes, 37, 49-50, 268

messageStr() (FlipTransaction), 363

messages. See events

metaObject () (QObject), 20

meta-object compiler (moc), 17-18, 20,

376

metrics, 167, 204

Microsoft Internet Explorer, 375

Microsoft SQL Server, 262

Microsoft Visual C++, 4, 18, 395

Microsoft Visual Studio, 5, 395

mid() (QString), 59, 255

418 Index
middle mouse button, 225 multimap<k, T>, 251

MIME sources, 44, 220 multi-page dialogs, 32

MIME types, 219, 222 multi-page widgets, 34

Minimum (QSizePolicy), 102, 139 multiple database connections,
MinimumExpanding (QSizePolicy), 140 264-265

ninimumHeight () (QWidget), 136 multiple document interface (MDI), 67,
minimum size, 32, 57, 137, 140 152-161

minimumSizeHint ()

Plotter, 120

QWidget, 140
minimumWidth() (QWidget), 136
mirror() (QImage), 363
MiterJoin, 177
mkdir ()

QDir, 238

QFtp, 285
MNG files, 43
moc, 17-18, 20, 376
modal dialogs, 59-60
modeless dialogs, 58
modificationChanged() (QTextEdit), 154,

160

modified() (Spreadsheet), 77
modifier keys, 164
monitoring events, 168-171, 370
most recently used files, 46, 54-56
Motif integration, 367
Motif style, 8,47, 122
MotifPlus style, 8
mouse buttons, 107, 225
mouse cursor, 78,123, 124, 190
mouseDoubleClickEvent () (Cube), 212
mouseMoveEvent ()

Cube, 212

IconEditor, 107

Plotter, 123
mouse position, 48
mousePressEvent ()

Cube, 212

IconEditor, 106

OvenTimer, 182

Plotter, 123
mouseReleaseEvent ()

Plotter, 124

QWidget, 226
mouse tracking, 107
mouse wheels, 126
move () (QWidget), 64
moveDockWindow () (QMainWindow), 152
moveWidget () (QScrollview), 150
movies, 244
MRU files, 46, 54-56
MSG type, 370
multi-line editors. See QTextEdit

multiple documents, 64-67
multiple inheritance, 376
multiset<k>, 251
multithreading, 349-365
mutable keyword, 89, 91
mutexes, 353
mutual exclusion, 34, 45
MySQL, 262
MyTable
copy (), 225
dragObject (), 224
paste(), 225
MyWhatsThis
class definition, 345
MyWhatsThis (), 345
clicked(), 345
text (), 345

N

name parameter, 12, 13, 385
nameless database connection, 265
namespaces

C++,72,115

XML, 307, 310
native APIs, 367-370
native dialogs, 37
navigating result sets, 262, 265
nested layouts, 15, 138
NetBSD, 369
networking, 283-305, 364
new operator, 16, 48—49, 64-66, 346
newConnection() (TripServer), 298
newFile()

Editor, 159

MainWindow, 49, 65, 154
newPage () (QPrinter), 199, 201, 203
newlines, 234, 236
newsletter, 10
next () (QSqlQuery), 262—263
nextSibling() (QDomNode), 316
nmake, 5
NoBrush, 177
NoPen, 176
non-blocking operations. See

asynchronous operations

Index

419

non-commercial edition of Qt, 393—-394
non-GUI threads, 359

non-validating XML parsers, 307, 312
normalize() (QRect), 124

northwest gravity. See WStaticContents
NotAndROP, 178

NotROP, 127,178

notify() (QApplication), 171

null strings, 257

numCopies () (QPrinter), 203
numRowsAffected() (QSqglQuery), 263
number () (QString), 75, 98, 255

O

ObjectSafety
class definition, 378
GetInterfaceSafetyOptions(), 378
SetInterfaceSafetyOptions(), 378
objects
event processing, 163-173
introspection, 20
names, 12, 13, 385
parent—child mechanism, 16
signals and slots mechanism, 18-21
ODBC, 262
offset () (DiagramLine), 188
one-shot timers, 168, 182, 293
online documentation, 8-10, 342-347
online help, 339-347
opacity, 101, 368—369
OpagqueMode, 178
opaque resizing, 143
open ()
Editor, 159
MainWindow, 50, 154
QFile, 78,79, 228, 230, 234, 235
OpenBSD, 369
OpenGL, 209-214
openRecentFile() (MainWindow), 55
Open UNIX. See UnixWare
operating systems, 369-370
operator() (), 87
operator* () (iterators), 246
operator+() (QString), 254
operator++()
iterators, 246
QSemaphore, 354
operator+=()
QSemaphore, 356
QString, 254
operator--{()
iterators, 246

operator--() (continued)
QSemaphore, 354
operator<(), 244
operator<<(), 143, 152, 229, 235
operator==(), 244
operator>>(), 143, 152, 231, 236
operator([] ()
map<k, T>, 250
QMemArray<T>, 253
QValueList<T>, 248
vector<T>, 245, 246
Oracle, 262
OSF, 369
outputFormatList () (QImage), 239
OvenTimer
class definition, 180
printing, 199
OvenTimer(), 181
draw(), 183-184, 199
duration(), 182
mousePressEvent (), 182
paintEvent (), 182, 185
setDuration(), 181
timeout (), 180
Oven Timer example, 180-185
override cursor, 78, 123
ownership. See parent

P

paginate() (PrintWindow), 205
paintCell() (QTable), 73
paint devices, 175, 198, 204
paintEvent ()

IconEditor, 104

OvenTimer, 182, 185

Plotter, 121

QwWidget, 104, 113

Ticker, 167
paintGL() (Cube), 211
painter coordinates, 178-179
painters. See QPainter
palette() (Qwidget), 105
palettes, 105,118, 184
parent

of a dialog, 51

of a layout, 15

of a list view item, 315

of a table item, 75

of a validator, 26

of a widget, 7, 16

of an object, 16
parent parameter, 12,13

420

Index

parse() (Q¥mlSimpleReader), 312
parseEntry() (DomParser), 314
parsers, 92,237, 307
parsing events, 308
paste()
DiagramView, 193
MyTable, 225
Spreadsheet, 81
PATH environment variable, 4, 347, 386,
395, 397
peerAddress () (QSocketDevice), 305
peerPort () (QSocketDevice), 305
pending events, 173
pens, 175-177
percent sign (‘%’), 52, 53, 255
physical coordinates, 178-179, 185
pie segments, 176, 177
pixmaps. See QPixmap
placeholders (SQL), 263—264
platform-specific APIs, 367-370
Platinum style, 8
PlayerWindow
class definition, 371
PlayerWindow(), 372
timerEvent (), 374
PlotSettings
class definition, 116
PlotSettings(), 130

adjust (), 130

adjustAxis(), 131

scroll(), 130

spanX(), 116

spanY(), 116
Plotter

class definition, 115
Plotter(), 117
clearCurve(), 120
drawCurves (), 129
drawGrid(), 128
keyPressEvent (), 125
minimumSizeHint (), 120
mouseMoveEvent (), 123
mousePressEvent (), 123
mouseReleaseEvent (), 124
paintEvent (), 121
refreshPixmap(), 127
resizeEvent (), 122
setCurveData(), 120
setPlotSettings (), 118
sizeHint (), 120
updateRubberBandRegion (), 126
wheelEvent (), 126
zoomIn(), 119
zoomOut (), 119

Plotter example, 114-132
plugins, 109
PNG files, 43
PNM files, 43
pointer-based containers, 251-253
polygonal items, 186
polygons, 176, 183, 186
polylines, 130, 176
populate() (ArtistComboBox), 281
popup menus. See menus
pos () (QMouseEvent), 106
post () (QHEttp), 290
postEvent () (QApplication), 359, 363
PostScript, 199
PostgreSQL, 262
preferences, 63-64, 258
Preferred (QSizePolicy), 118,139
prepare() (0SqlQuery), 263
prepend() (QPtrList<T>), 252
prev() (QSqlQuery), 263
previewing in @t Designer, 25, 145
primeDelete() (QSglCursor), 266
primeInsert()
QDataTable, 270
QsqglCursor, 265, 270
primeInsertArtist() (ArtistForm), 270
primeUpdate() (0SglCursor), 265,278
printBox() (PrintWindow), 207
printCanvas () (PrintWindow), 200
print dialog, 37, 198
printFlowerGuide() (PrintWindow), 201,
204, 208
printImage () (PrintWindow), 201
printOvenTimer () (PrintWindow), 199
printPage() (PrintWindow), 204, 207
printRichText () (PrintWindow), 202
PrintWindow
PrintWindow(), 204
entryHeight (), 206
paginate(), 205
printBox(), 207
printCanvas (), 200
printFlowerGuide(), 201, 204, 208
printImage(), 201
printOvenTimer (), 199
printPage(), 204, 207
printRichText (), 202
printer drivers, 199
printing, 198-208
.pro files
creating using gmake, 4
for ActiveX applications, 374, 379,
383
for console applications, 353

Index

421

.pro files (continued)
for internationalized applications,
326, 334, 335
for multithreaded applications, 352
for OpenGL applications, 214
for @t Designer plugins, 111
for using QAssistantClient, 346
for using QwidgetFactory, 33
processEvents ()
QaApplication, 172,208
QEventLoop, 172
processExited()
ConvertDialog, 241
QProcess, 241
processes, 239
producer—consumer model, 354-358
programs. See examples
progress () (QProgressBar), 293
progress bars, 35, 289, 291, 293
progress dialogs, 37, 208, 289, 291
Project Chooser example, 217-220

project files. See . dsp files and .pro
files
ProjectView
class definition, 217
ProjectView(), 218
contentsDragEnterEvent (), 219
contentsDropEvent (), 219
contentsMouseMoveEvent (), 218
contentsMousePressEvent (), 218
startDrag(), 219
propagation of events, 165,171,216
properties, 20, 22, 100, 280
properties() (DiagramView), 194
PropertiesDialog class, 194
property() (QObject), 374
propertyChanged () (QAxBindable), 377
property maps, 278, 282
proportional resizing, 136
protocols. See Internet protocols
provides ()
QDragEnterEvent, 219, 222
QDragMoveEvent, 222
push_back()
list<T>, 248
QValueVector<T>, 245
vector<T>, 245
push buttons, 5, 14, 23, 34
put () (QFtp), 285

Q

Q_ENUMS () macro, 372, 376

Q_EXPORT_PLUGIN() macro, 111

Q_INTx, 78,228

Q_OBJECT macro
for meta-object system, 20
for properties, 100
for signals and slots, 12, 20, 40
for tr(), 13, 323, 324

Q_0S_xxx, 369

Q_PROPERTY () macro, 100, 280

Q_UINTx, 78, 228

Q_WS_xxx, 369

QAccel, 165

QAction, 4445, 341
compared with key events, 165
activated(), 44
addTo(), 46, 152
setEnabled(), 155
setToggleAction(), 45
setToolTip(), 339
setWhatsThis (), 341
toggled(), 45

QActionGroup, 45

qApp global variable, 46, 170

QApplication, 3
in console applications, 238
subclassing, 385
aboutQt (), 46
beep(), 83
clipboard(), 81,224
closeAllWindows (), 66
commitData(), 384, 386
exec(), 3,171-172, 359
hasPendingEvents (), 173
isSessionRestored(), 388, 389
lastWindowClosed(), 65
macEventFilter(), 370
macVersion(), 370
notify(), 171
postEvent (), 359, 363
processEvents (), 172-173, 208
quit(), 6, 65,272
gwsEventFilter(), 370
restoreOverrideCursor (), 78, 123
reverselLayout (), 328
saveState(), 384
sessionId(), 388
sessionKey(), 388
setColorSpec(), 113
setMainwWidget(), 3, 64
setOverrideCursor(), 78, 123
setReverseLayout (), 327

422

Index

QApplication (continued)
startDragDistance(), 218
style(), 122
translate(), 325
winEventFilter(), 370
winvVersion(), 370
x11EventFilter(), 370

QAsciiDict<T>, 252

QAssistantClient, 347

QAXAGG_IUNKNOWN macro, 378

QAxAggregated
subclassing, 378
controllingUnknown(), 378
queryInterface(), 378

QAxBase, 372
dynamicCall(), 374
generateDocumentation(), 373
queryInterface(), 375
querySubObject (), 374

QAxBindable
subclassing, 375
createAggregate(), 377
propertyChanged(), 377
requestPropertyChange(), 377

QAxContainer module, 371-375

QAxFactory, 381
classiD(), 382
create(), 382
eventsID(), 383
exposeToSuperClass (), 383
featureList (), 382
interfaceID(), 383

QAXFACTORY_DEFAULT () macro, 376, 379

QAXFACTORY_EXPORT() macro, 381

QAxObject, 372
subclassing, 375

QAxServer module, 371, 375-384

QAxWidget, 372
subclassing, 375
setControl(), 372

QBrush, 176

QBuffer, 78,289, 294

QButtonGroup, 34

OByteArray, 222, 253, 282, 289, 294

QCanvas, 185
printing, 200
collisions(), 190,200
update(), 191

QCanvasEllipse, 186

QCanvasItem, 185
boundingRect (), 196, 197
draw(), 200
hide(), 195,196
rtti(), 188,191

QCanvasItem (continued)
setActive(), 195
setVelocity(), 198

setZ(), 191
show (), 190
update(), 196

QCanvasLine, 185, 188
QCanvasPolygon, 186
QCanvasPolygonalItem, 186, 195
areaPoints (), 197
drawShape (), 196
setBrush(), 195
setPen(), 195
QCanvasRectangle, 185, 187
QCanvasSpline, 186
QCanvasSprite, 186
QCanvasText, 186
QCanvasView, 186
QChar, 320
is... () functions, 321
latinl(), 320
lower(), 321
unicode(), 320
upper (), 321
QCheckBox, 34
QClipboard, 224
Selection, 225
dataf(), 225
setData(), 225
setText (), 81,224
supportsSelection(), 226
text(), 82,224
QCloseEvent, 53, 1567, 159, 352
QColor, 102
QColorDialog, 36,212
QColorDrag, 219
QColorGroup, 105
QComboBox, 31-32, 36
subclassing, 280
currentItem(), 61
insertItem(), 32,281
gCompress (), 232
QCString, 258
QCursor, 370
QCustomEvent, 361
QDataStream, 78
binary format, 79, 228, 231
on a byte array, 294, 305
on a socket, 291, 300
supported data types, 227
versioning, 79
readRawBytes (), 231
setByteOrder (), 231
setVersion(), 79, 228, 230, 231, 232

Index

423

QDataStrean (continued)
writeRawBytes(), 231
QDataTable, 265, 266, 277
auto-populate, 268
addColumn(), 268
beforeDelete(), 269, 279
beforelnsert(), 270,279
contextMenuEvent (), 270
currentChanged(), 274
currentRecord(), 273
installEditorFactory(), 282
installPropertyMap (), 282
primeInsert(), 270
refresh(), 268,273
setAutoDelete(), 268
setConfirmDelete(), 268
setFilter(), 274
setSort (), 272
QDate, 328
QDateEdit, 36, 328
QDateTime, 182, 328
QDateTimeEdit, 36, 328
QDB2, 262
QDeepCopy<T>, 364, 365
QDial, 36
QDialog, 12
subclassing, 12, 267, 271, 275, 304,
351
accept (), 25,59, 269, 278
exec(), 59
reject(), 25,59, 269, 279
setModal(), 59, 173
QDict<T>, 252
QDir, 237
convertSeparators(), 53,238
currentDirPath(), 238
entryList(), 238
exists (), 238
homeDirPath(), 238
mkdir (), 238
rename (), 238
rmdir(), 238
QDns, 303
QDockWindow, 151
QDomDocument
createElement (), 316
createTextNode(), 316
documentElement (), 314
setContent (), 314
QDomElement, 313, 314
QDomNode, 314
appendChild(), 316
firstChild(), 316
nextSibling(), 316

QDomNode (continued)
save(), 316
toElement (), 314
toText (), 315
QDomText, 313, 315
QDoubleValidator, 26
QDragEnterEvent, 216, 219, 222, 223
QDragMoveEvent, 222, 223
QDragObject, 220, 223
copying to the clipboard, 225
subclassing, 221
drag(), 219
encodedData (), 222
format (), 221
setPixmap(), 219
QDropEvent, 220, 223
gembed, 328
QErrorMessage, 37
QEvent, 164
QEventLoop, 172
ExcludeUserInput, 172
processEvents (), 172
wakeUp (), 363
gFatal(), 214
QFile, 77,289
implicit close, 229
implicit open, 312
errorString(), 78,79, 229
exists(), 238
open(), 78,79, 228, 230, 234, 235
readall(), 231-232
remove (), 238
status (), 229
writeBlock(), 231
QFileDialog, 37
getOpenFileName(), 50, 159, 240
getSaveFileName(), 52
QFilelInfo, 53, 238
gFind(), 246
QFont, 176,370
QFontDialog, 36
QFontMetrics, 167
QFrame, 34
QFtp, 283
in multithreaded applications, 364
abort (), 289
cd(), 285, 286
close(), 285
commandFinished(), 285
commandStarted(), 285
connectToHost (), 285, 286
dataTransferProgress (), 289
done (), 284
get (), 284, 285, 287

424

Index

QFtp (continued)
list(), 285,286, 287
listInfo(), 287
login(), 285, 286
mkdir(), 285
put (), 285
rawCommand () , 285
readAll (), 289
readBlock(), 289
readyRead (), 289
remove (), 285
rename (), 285
rmdir(), 285
stateChanged(), 286

gglClearColor () (QGLWidget), 210

QGLColormap, 214

QGLContext, 214

QGLFormat, 214

QGLWidget, 209
initializeGL(), 210
paintCL(), 211
gglClearColor(), 210
resizeGL(), 210
setFormat (), 210
updateCL(), 212

QGrid, 16

QGridLayout, 15,29, 30, 137-139

QGroupBox, 34

QHBox, 6-7, 16

QHBoxLayout, 15, 23, 137

QHostAddress, 304

QHttp, 289

in multithreaded applications, 364

dataTransferProgress (), 291
done(), 290

get (), 290
head(), 290
post (), 290

readAll (), 291
readBlock(), 291
readyRead(), 291
request (), 290
requestFinished(), 291
requestStarted(), 291
setHost (), 290
QHttpRequestHeader, 291
QIconvView, 33, 35,73
QIconViewItem, 73
QImage, 101, 282
compared with Qpixmap, 113
printing, 200
convertDepth(), 103
detach(), 103
height(), 108

0Image (continued)
mirror(), 363
outputFormatList (), 239
rect(), 108
width(), 108
QImageDrag, 219
QInputDialog, 37,191
QIntDict<T>, 252-253
QIntDictIterator<T>, 253
QIntvalidator, 26
QIODevice, 289, 291, 294, 314
QKeyEvent, 126, 164
QLabel, 3, 35,57, 59
QLayout, 15,137
resize mode, 30
setMargin(), 14,138
setSpacing(), 15,138
QLCDNumber, 35
QLibrary, 368
QLineEdit, 13, 36
hasAcceptablelInput (), 25
setBuddy (), 13
setFrame(), 75
setText (), 75
setValidator(), 25,98
text (), 77
textChanged(), 14
QListBox, 33, 35, 73, 145,217
QListBoxItem, 73
QListView, 33, 35,73, 308, 312, 316
addColumn(), 312
setResizeMode(), 312
setRootIsDecorated(), 312
QListViewItem, 73
subclassing, 380
setOpen(), 310, 315
setText(), 310,315
QLocale, 328
QMacStyle, 122
QMainWindow, 40

central widget, 43, 69-70, 142, 152

constituent widgets, 43
streaming operators, 152
subclassing, 40, 380
bottomDock (), 43
centralWidget(), 43
leftDock(), 43
menuBar (), 43, 47
moveDockWindow(), 152
rightDock(), 43
setCentralWidget (), 42
setDockEnabled(), 152
statusBar(), 43,57
topDock (), 43

Index

425

OMainWindow (continued)
whatsThis (), 341
gmake, 4-5, 17-18, 20, 25
See also .pro files
QMap<K, T>, 250
keys (), 251
values (), 251
QMemArray<T>, 253
copy (), 254
find(), 254
operator(] (), 253
resize(), 253
QMenuBar, 47
QMessageBox, 37
Default, 50
Escape, 50
about (), 62
critical(), 50
information(), 50
question(), 50
warning (), 49, 52
QMimeSource, 220, 223, 225
QMIN() macro, 182
QMotifStyle, 122
QMouseEvent, 106, 107
QMovie, 244
QMutex, 353
lock(), 353, 354
tryLock(), 353
unlock(), 353, 354
QMutexLocker, 354
QMYSQL3, 262
QNX, 369
QObject, 20
reentrancy, 364
subclassing, 20-21, 286, 380
child(), 33
className(), 20
connect(), 6,14, 18
customEvent (), 360
deletelater (), 299, 300, 364
disconnect(), 19, 20
event (), 164,170, 333
eventFilter(), 169, 170
installEventFilter(), 169, 170
killTimer(), 168
metaObject (), 20
property(), 374
setProperty(), 373
startTimer (), 167
timerEvent (), 168, 173, 303, 374
tr(), 13,20, 322, 323, 331, 335
QOCIS8, 262
QODBC3, 262

QPaintDevice, 370
QPaintDeviceMetrics, 204
QPainter, 175-185

coordinate system, 105-106, 150,
178-179
for printing, 198
boundingRect (), 207
drawaArc(), 176
drawChord (), 176
drawConvexPolygon (), 183
drawCubicBezier(), 176
drawEllipse(), 176,177
drawLine(), 104, 176, 184
drawLineSegments (), 176
drawPie(), 176,177
drawPoints (), 176
drawPolygon(), 176, 183
drawPolyline(), 130, 176
drawRect (), 121,176,184
drawRoundRect (), 176
drawText (), 129, 167,179, 184
fillRect (), 106
handle(), 370
restore(), 178
restoreWorldMatrix(), 180
rotate(), 180, 184
save(), 178
saveWorldMatrix (), 180
scale(), 180
setBrush(), 176
setClipRect (), 129
setFont (), 176
setPen(), 176
setRasterOp(), 127
setViewport (), 182
setWindow(), 179, 182
setWorldMatrix(), 179
shear(), 180
translate(), 180, 185

QPalette, 105
QPen, 176
QPicture, 370
QPixmap, 113

compared with QImage, 113

for double buffering, 113, 116, 185
fromMimeSource (), 44

handle(), 370

Qpoint, 105,218
QPointArray, 253
QPopupMenu, 46—-48

exec(), 48

insertItenm(), 46, 332
insertSeparator(), 46, 55
setItemParameter (), 55,56, 156, 332

426

Index

QprintDialog, 37, 198
QPrinter, 198-208
abort (), 208
handle(), 370
newPage (), 199, 201, 203
numCopies (), 203
setPrintProgram(), 199
setup(), 198, 199
QProcess, 239-241, 347
addArgument (), 240
processExited(), 241
readyReadStderr (), 240
QProgressBar, 35
as busy indicator, 293
canceled(), 289
progress (), 293
setProgress (), 289,291, 293

QScrollview (continued)

contentsMouseMoveEvent (), 149, 190,
218

contentsMousePressEvent (), 149, 190,
218

cornerWidget (), 145

drawContents (), 148

enableClipper(), 150

horizontalScrollBar(), 73, 145

moveWidget (), 150

resizeContents (), 148

setHScrollBarMode (), 146

setVScrollBarMode (), 146

sizeHint (), 148

updateContents (), 148, 150

verticalScrollBar(), 73, 145

viewport (), 73, 145, 149, 216

QProgressDialog, 37
invoking, 172, 208
canceled(), 289
setProgress (), 173,289,291
wasCanceled(), 173

QSemaphore, 354
operator++(), 354
operator+=(), 356
operator--(), 354

QServerSocket, 298

QPSQL7, 262 QSessionManager, 386
QPtrDict<T>, 252 cancel (), 387
QPtrList<T>, 67,252 handle(), 370

QPtrListIterator<T>, 252

QPtrVector<T>, 251-252

QPushButton, 5, 34
subclassing, 302
clicked(), 6,163
setDefault(), 13

release(), 387
setDiscardCommand (), 386
QSettings, 63, 143, 258
beginGroup(), 63
endGroup (), 63
readBoolEntry(), 64
QRadioButton, 34 readListEntry(), 64
QRect, 121,124 readNumEntry(), 64
contains(), 108 setPath(), 63
normalize(), 124 writeEntry(), 63
QRegExp, 26, 94, 98 QSimpleRichText, 201-203
QRegExpValidator, 26, 98 Qsize, 113,200

QRegion, 113 QSizepolicy, 102, 139
handle(), 370 stretch factors, 140
rect(), 121 Expanding, 118, 139

QRgb, 102 Fixed, 139

qRgb(), 102 Ignored, 140

gRgba(), 101-102 Maximum, 139

QScrollBar, 36, 73, 145
QScrollview, 35—-36, 74
constituent widgets, 145

Minimum, 102, 139
MinimumExpanding, 140
Preferred, 118, 139

subclassing, 146 QSlider, 6, 36
addchild(), 145 setRange(), 7
addwidget (), 150 setValue(), 7

contentsContextMenuEvent (), 189
contentsDragEnterEvent (), 219
contentsDropEvent (), 219 in multithreaded applications, 364
contentsMouseDoubleClickEvent (), subclassing, 298

191 bytesAvailable(), 300

valueChanged(), 7
QSocket, 78,291, 300

Index 427

0Socket (continued) QSqlDatabase, 261
canReadLine(), 301 addDatabase(), 262, 264
connectToHost (), 293 commit (), 264, 269, 278
connected(), 293 database(), 264
connectionClosed(), 297, 299 driver(), 264
delayedCloseFinished(), 299, 300 rollback(), 264, 269, 279
error(), 293 setDatabaseName (), 261
readLine(), 301 setHostName (), 261
readyRead (), 295, 296, 300, 301 setPassword(), 261
writeBlock(), 295 setUserName(), 261

QSocketDevice, 78, 283, 304 transaction(), 264, 268, 273
in multithreaded applications, 364 QSqlDriver, 264
Datagram, 303, 304 QSqglEditorFactory, 282
bind(), 304 QSqlError, 262, 263
peerAddress (), 305 0SqglForm, 275
peerpPort (), 305 installPropertyMap(), 278
readBlock(), 305 readFields (), 275,278
setBlocking (), 303, 304 setRecord(), 278
writeBlock(), 303 writeFields(), 275,278

QSocketNotifier, 304 QSQLITEX, 262
in multithreaded applications, 364 QSqlPropertyMap, 275, 282
activated(), 305 0SqlQuery, 262, 265

QSpinBox, 6, 36 addBindvalue(), 263
subclassing, 97-99 at(), 263
mapTextToValue(), 98 bindvalue(), 263
mapValueToText (), 98 exec(), 262—264
setRange(), 7 first(), 263
setValue(), 7 isActive(), 263
text(),98 last(), 263
valueChanged(), 7 lastError(), 263

QSplashScreen, 67—68 next (), 262

Qsplitter, 140 numRowsAffected(), 263
streaming operators, 143 prepare(), 263
KeepSize, 142 prev(), 263
setOpaqueResize(), 143 seek(), 263
setResizeMode(), 142 setForwardonly (), 263
setSizes(), 143 value(), 262
sizes(), 248 0SqlRecord, 265

QSqglCursor, 265, 266, 275 QSglSelectCursor, 271
auto-populate, 268 QStatusBar, 57
subclassing, 270, 274 addwidget (), 57
ReadOnly, 272 clear(), 340
calculateField(), 274, 282 message (), 51, 340
del(), 266 QStoredDrag, 220—-221
insert(), 265 QString, 254-258
primeDelete(), 266 case sensitivity, 256
primeInsert(), 265,270 conversion to and from const char *,
primeUpdate(), 265,278 257-258
select (), 265,277, 281 null vs. empty, 257
setCalculated(), 274 Unicode support, 254, 320-323
setGenerated(), 270 append (), 254
setMode (), 272 arg(), 52, 255, 325
update(), 265,278 ascii(), 257

value(), 265 endsWith(), 256

428

Index

QString (continued)
fromAscii(), 326

insert (), 256

isEmpty (), 257

isNull(), 257

latinl(), 257

left(), 265

length(), 257
localeAwareCompare (), 328
lower(), 256

mid(), 59, 255

number (), 75, 98, 255
operator+(), 254
operator+=(), 254
remove (), 256
replace(), 223, 236, 256
right(), 255
setNum(), 255
simplifyWhitespacel(), 257
sprintf (), 254
startsWith(), 256
stripWhitespace(), 256
toDouble(), 91, 255
toInt(), 60,98, 255
truncate(), 259
upper (), 98, 256
QStringList, 54, 249

join(), 257
split(), 82,236,257
QStyle, 122

QStyleSheet, 341
escape(), 202, 223
ot class, 10
Qt 4 features, 73, 251, 254, 365
Qt Assistant
browsing the Qt documentation, 9
providing online help, 346
@t Designer
creating dialogs, 21-33
creating main windows, 40, 44
launching, 21
layouts, 23, 29, 30
previewing, 25, 145
specifying member variables, 28, 239,
292
splitters, 143
templates, 21, 37, 99, 145
.ui files, 25, 26, 33, 194, 239
.ui.hfiles, 26-28, 99, 194, 239, 292
using custom widgets, 108-111
Qt editions, 393-394
Qt/Embedded, 367-370
Qt Linguist, 334-337
QT_NO_CAST_ASCII, 326

Qt Quarterly, 10,73, 132, 198, 259, 317,
364

QT_TR_NOOP (), 325-326

QT_TRANSLATE_NOOP (), 326

QTabWidget, 33, 34

QTable, 35
constituent widgets, 73
database-aware subclass, 266
drag and drop, 221
item ownership, 75
subclassing, 71, 224
Single, 73,81
cellwWidget (), 77
clearCell(), 73
createEditor(), 75
dragObject (), 224
endEdit (), 76
horizontalHeader(), 73
paintCell(), 73
selection(), 81
setCurrentCell(), 59
setDragEnabled(), 224
setItem(), 75
setSelectionMode(), 73
setShowGrid(), 45
setSorting (), 268
verticalHeader (), 73

QTableltem, 71,73
ownership, 75
subclassing, 88
alignment (), 90
text (), 90

QTDIR environment variable, 111, 395,

397

QTDS7, 262

QTextBrowser, 35, 342, 344

QTextCodec, 321, 323
codecForLocale(), 321
codecForName (), 322
localel(), 327
setCodecForCStrings (), 323
setCodecForTr (), 322, 335
toUnicode(), 322

QTextDrag, 219
decode(), 220, 224
setSubtype(), 219

QTextEdit, 36
subclassing, 158
copyAvailable(), 154
isModified(), 160
modificationChanged(), 154, 160
setModified(), 160

QTextIStream, 143, 193

QTextOStream, 143, 222

Index

429

QTextStream, 78, 234
on a byte array, 222
on a socket, 291
read(), 193, 236
readLine(), 237
setCodec(), 321
setEncoding (), 235, 321
QThread, 349
subclassing, 350, 361
currentThread(), 358
run(), 350, 353, 355, 357, 362

start(), 352
terminate(), 350
wait(), 352

QThreadStorage<T>, 358
hasLocalData(), 358
localDatal(), 358
setLocalData(), 358

QTime, 328

QTimeEdit, 36, 328

QTimer, 168
compared with timer events, 168
in multithreaded applications, 364
single-shot, 168, 182, 293
start(), 182
timeout (), 168, 181,293

QToolBar, 47—48, 150-152

QToolBox, 34

QToolTip, 339-340

QToolTipGroup, 340

QTranslator, 327

queries, 262

QueryInterface() (IUnknown), 378

queryInterface()
QAxAggregated, 378
QAxBase, 375

querySubObject () (QAxBase), 374

question() (QMessageBox), 50

quit () (QApplication), 6, 65,272

Quit example, 5—6

qUncompress (), 232

QUribrag, 219
canDecode (), 216217
decodeLocalFiles(), 217

Qurl, 286

QUrlinfo, 287

Qvalidator, 26

QValueList<T>, 248
streaming operators, 229, 231
operator(] (), 248

QValueVector<T>, 245, 254
append (), 245
push_back (), 245

Qvariant, 89, 100, 258-260, 262, 373
isvalid(), 90
toString(), 90
type(), 90, 259
QVBox, 16
QVBoxLayout, 15,23, 137
QWaitCondition, 356
wait(), 357
wakeAll (), 357
QWhatsThis, 345
add(), 340, 346
clicked(), 345
text(), 345
QWheelEvent, 126
Qwidget, 10
subclassing, 100, 115, 166, 180, 342,
371, 375, 387
adjustSize(), 118
close(), 14,53
closeEvent (), 40, 53, 157, 159, 352,
387
colorGroup(), 105,121
contextMenuEvent (), 40, 48
dragEnterEvent (), 216
dragLeaveEvent (), 217
dragMoveEvent (), 217
dropEvent (), 217
find(), 367
focusNextPrevChild(), 169, 170
fontMetrics(), 160, 167
handle(), 370
hide(), 31,119
hideEvent (), 168
keyPressEvent (), 125, 164, 168
keyReleaseEvent (), 164
macEvent (), 370
minimumHeight (), 136
minimumSizeHint (), 120, 140
minimumWidth(), 136
mouseDoubleClickEvent (), 212
mouseMoveEvent (), 107, 123, 212
mousePressEvent (), 106, 123, 182, 212
mouseReleaseEvent (), 124, 226
move (), 64
paintEvent (), 104,113,121, 167, 182,
185
palette(), 105
gwsEvent (), 370
raise(), 58
repaint (), 104
resize(), 64,136
resizeEvent (), 122, 136
scroll(), 168
setAcceptDrops (), 216,218

430

Index

QWidget (continued)
setActivewWindow(), 58, 83
setBackgroundMode (), 118, 128
setCaption(), 7
setCursor(), 123, 190
setEnabled(), 13, 17,25
setFixedSize(), 136
setFocus (), 157
setFocusPolicy(), 118
setGeometry(), 136
setIcon(),43
setMinimumSize(), 32,57, 136
setMouseTracking (), 107
setShown(), 31
setSizePolicy(), 102,118,373
setStyle(), 122
setTabOrder (), 18
setWFlags(), 158
show(), 3,58-59, 119
showEvent (), 167
sizeHint (), 32,57,102, 120, 140, 160,

167
style(), 122
unsetCursor(), 124, 190
update(), 103, 104, 119, 148, 167, 168
updateGeometry(), 103, 147, 167
wheelEvent (), 126
winEvent (), 370
winId(), 367,370
x11Event (), 370

QWidgetFactory, 33

QWidgetList, 67

QWidgetPlugin, 109
create(), 110
group(), 110
iconSet (), 111
includeFile(), 110
isContainer(), 110
keys(), 110
toolTip(), 111
whatsThis (), 111

QWidgetStack, 33, 144

QWindowsStyle, 122

QWindowsXPStyle, 122

QWizard, 37-38

QWMatrix, 179

QWorkspace, 152
activeWindow(), 155
cascade(), 156
closeActiveWindow(), 156
closeAllwWindows (), 156
tile(), 156
windowActivated(), 1564
windowList (), 156

QWS, 369
QWSEvent, 370
gwsEvent () (QWidget), 370
gqwsEventFilter () (QApplication), 370
QxXmlContentHandler, 308
characters(), 310
endDocument (), 308
endElement (), 311
startDocument (), 308
startElement (), 310
QXmlDeclHandler, 308
QxmlDefaultHandler, 308, 309
QXmlDTDHandler, 308
QXmlEntityResolver, 308
QXmlErrorHandler, 308
errorString(), 310
fatalError(), 311
QXmlLexicalHandler, 308
QxmlSimpleReader, 307, 308, 312
parse(), 312
setContentHandler(), 312
setErrorHandler (), 312

R

radio buttons, 34
raise() (QWidget), 58—59
raiseWidget () (QWidgetStack), 144
range controls, 36
raster operations, 127, 178
rawCommand () (QFtp), 285
.rc files, 379, 383
read () (QTextStream), 193,236
readAll ()

QFile, 231

QFtp, 289

QHttp, 291
readBlock ()

QFtp, 289

QHttp, 291

QSocketDevice, 305
readBoolEntry() (QSettings), 64
readClient () (ClientSocket), 299
readFields () (QSqlForm), 275,278
readFile() (Spreadsheet), 79
readFromStream() (Gallery), 231
readFromString () (Gallery), 237
readLine()

QSocket, 301

QTextStream, 237
readListEntry() (QSettings), 64
readNumEntry () (QSettings), 64
ReadOnly (QSglCursor), 272

Index

431

readRawBytes () (QDataStream), 231
readSettings()

MailClient, 143

MainWindow, 63
readyRead ()

QFtp, 289

QHttp, 291

QSocket, 295, 296, 300, 301
readyReadStderr () (QProcess), 240
recalculate() (Spreadsheet), 84
recently opened files, 46, 54-56
rect()

QImage, 108

QRegion, 121
rectangles, 124
recursive-descent parsers, 92
reentrancy, 363-364
reference counting, 259
reference documentation, 8—10
refresh()

ArtistComboBox, 280

QDataTable, 268,273
refreshPixmap () (Plotter), 127
Region type, 370
regions, 113
registry, 63
-regserver option, 381
regular expressions, 26, 94, 98
reject()

ArtistForm, 269

CdForm, 279

QDialog, 25,59
Release() (IUnknown), 375,378
release() (QSessionManager), 387

Reliant UNIX, 369

remove ()
QFile, 238
QFtp, 285

QString, 256
removeTip () (QToolTipGroup), 340
rename ()

QDir, 238

QFtp, 285
repaint () (Qwidget), 104
repainting, 103, 104, 108
reparenting, 16, 57, 145
replace() (QString), 223, 236, 256
request () (QHttp), 290
requestFinished() (QHttp), 291
requestPropertyChange () (QAxBindable),

377

requestStarted() (QHttp), 291
resize()

QMemArray<T>, 253

resize() (continued)
Qwidget, 64, 136
resizeContents ()
ImageEditor, 148
QScrollview, 148
resizeEvent ()
FindFileDialog, 136
Plotter, 122
resizeGL() (Cube), 210
resize handles, 198
resizeMode property (QLayout), 30
ResizeTransaction class, 362
resizing, 30, 108, 136-137, 143
resolution (of a paint device), 179, 200,
204
resolve() (QLibrary), 368
resource files, 367
restart command, 386
restore() (QPainter), 178
restoreOverrideCursor () (QApplication),
78,123
restoreState() (TicTacToe), 389
restoreWorldMatrix() (QPainter), 180
restoring settings, 63, 143, 152
retranslateStrings()
JournalvView, 334
MainWindow, 331
reverseLayout () (QApplication), 328
reverse layouts, 15, 170, 327, 328
RGB model, 101
RgnHandle type, 370
rich text, 35,201-203
See also HTML
right () (QString), 255
rightDock () (QMainWindow), 43
right mouse button, 40, 107, 212
right-to-left languages, 15, 327, 328
rmdir ()
QDir, 238
QFtp, 285
rollback() (0SglDatabase), 264, 269, 279
rotate() (QPainter), 180, 184
RoundCap, 177
RoundJoin, 177
round rectangles, 176
RTTI, 188
rtti() (QCanvasItem), 188,191
rubber bands, 114, 121-122, 123-125,
127
run()
Thread, 350, 353
TransactionThread, 362
running applications, 4

432

Index

running external programs, 239
run-time type identification, 188

S

sample programs. See examples
save()

Editor, 159

MainWindow, 51, 155

QDomNode, 316

QPainter, 178
saveAs () (MainWindow), 52
saveBinary() (Gallery), 228
saveFile() (MainWindow), 51
saveState()

Application, 385

QApplication, 384

TicTacToe, 388
saveToString() (Gallery), 236
saveWorldMatrix() (QPainter), 180
SAX, 307-312
SAX Handler, saxHandler

class definition, 309

example, 308-312

inheritance tree, 308

SaxHandler(), 310
characters(), 310
endElement (), 311
fatalError(), 311
startElement (), 310
scale()
QPainter, 180
Qsize, 200
SCO OpenServer, 369
scroll()

PlotSettings, 130
QWidget, 168

scroll bars, 35-36, 73, 145

scroll views, 35-36, 74
adding child widgets, 145
constituent widgets, 145
coordinate systems, 149
enabling the clipper, 150

subclassing QScrollview, 146-150

SDI, 67

second member (map<K, T> iterators),

130, 250
seek () (0SqlQuery), 263

select() (pSqlCursor), 265,277,281

SELECT statement, 262, 265
selectAll() (Spreadsheet), 83
selectColumn() (Spreadsheet), 83
selectRow() (Spreadsheet), 83

Selection (QClipboard), 225
selection()

QTable, 81

Spreadsheet, 81
semaphores, 354—356
Semaphores example, 354-356
semi-transparency, 101, 368-369
sendRequest () (TripPlanner), 294
sendToBack () (DiagramView), 192
separators

in file names, 53, 238

in menu bars, 47

in menus, 46

in toolbars, 47
-session option, 386, 388
sessionFileName() (TicTacToe), 388
sessionId() (QApplication), 388
sessionKey() (QApplication), 388
session management, 384—-389
set<k>, 251
setAcceptDrops () (QWidget), 216,218
setActive() (QCanvasItem), 195
setActiveltem() (DiagramView), 194
setActiveWindow() (Qwidget), 58-59, 83
setArtistId() (ArtistComboBox), 281
setAutoDelete()

QDataTable, 268

QPtrVector<T>, 252
setAutoRecalculate() (Spreadsheet), 85
setBackgroundMode () (Qwidget), 118, 128
setBlocking () (QSocketDevice), 303, 304
setBrush()

QCanvasPolygonalltem, 195

QPainter, 176
setBuddy() (QLineEdit), 13
setByteOrder () (QDataStream), 231
setCalculated() (0SqlCursor), 274
setCaption() (QWidget), 7
setCentralWidget () (QMainWindow), 42
setClipRect () (QPainter), 129
setCloseMode () (QDockWindow), 151
setCodec () (QTextStream), 321
setCodecForCStrings () (QTextCodec), 323
setCodecForTr () (QTextCodec), 322, 335
setColor () (AxBouncer), 377
setColorSpec() (QApplication), 113
setColumnRange () (SortDialog), 31
setConfirmDelete() (QDataTable), 268
setContent () (QDomDocument), 314

setContentHandler () (QXmlSimpleReader),
312

setControl () (QAxWidget), 372
setCurrentCell () (QTable), 59

Index

433

setCurrentFile()
Editor, 160
MainWindow, 53
setCursor () (Qwidget), 123,190
setCurveData() (Plotter), 120
setDatal()
Gallery, 232
QClipboard, 225
setDatabaseName () (QSglDatabase), 261
setDefault () (QPushButton), 13
setDirty() (Cell), 90
setDiscardCommand () (QSessionManager),
386
setDockEnabled() (QMainWindow), 152
setDragEnabled() (QTable), 224
setDuration() (OvenTimer), 181
setEnabled()
QAction, 155
Qwidget, 13, 17,25
setEncoding () (QTextStream), 235, 321
setErrorHandler () (QXmlSimpleReader),
312
setFilter() (QDataTable), 274
setFixedSize() (QWidget), 136
setFocus () (QWidget), 157
setFocusPolicy() (QWidget), 118
setFont () (QPainter), 176
setFormat () (QGLWidget), 210
setFormula()
Cell, 89
Spreadsheet, 75
setForwardOnly () (QSqlQuery), 263
setFrame() (QLineEdit), 75
setGenerated() (QSglCursor), 270
setGeometry() (QWidget), 136
setHScrollBarMode() (QScrollview), 146
setHost () (QHttp), 290
setHostName () (QSqlDatabase), 261
setIcon() (Qwidget), 43
setIconImage() (IconEditor), 103
setImage() (ImageEditor), 148
setImagePixel ()
IconEditor, 107
ImageEditor, 149
SetInterfaceSafetyOptions()
(Objectsafety), 378
setItem() (QTable), 75
setItemParameter () (QPopupMenu), 55, 56,
156-157, 332
setLocalData() (QThreadStorage<T>), 358
setMainWidget () (QApplication), 3, 64
setMargin()
QHBox, 7
QLayout, 14, 138

setMinimumSize() (Qwidget), 32,57, 136
setModal () (gDialog), 59,173
setMode () (QSglCursor), 272
setModified() (QTextEdit), 160
setMouseTracking () (QWidget), 107
setNum() (QString), 255
setOpaqueResize() (QSplitter), 143
setOpen() (QListViewItem), 310,315
setOrientation() (QDockWindow), 152
setOverrideCursor () (QApplication), 78,
123

setPassword() (QSqglDatabase), 261
setPath() (QSettings), 63
setPen()

QCanvasPolygonallten, 195

QPainter, 176
setPenColor() (IconEditor), 102
setPixmap () (QDragObject), 219
setPlotSettings() (Plotter), 118
setPrintProgram() (QPrinter), 199
setProgress ()

QProgressBar, 289, 291, 293

QProgressDialog, 173, 289, 291
setProperty() (Q0bject), 373
setRange ()

Qslider, 7

QSpinBox, 7
setRasterOp() (QPainter), 127
setRecord() (QSglForm), 278
setResizeEnabled() (QDockWindow), 152
setResizeMode ()

QListView, 312

QSplitter, 142
setReverseLayout () (QApplication), 327
setRootIsDecorated() (QListView), 312
setSelectionMode () (QTable), 73
setShowGrid() (QTable), 45
setShown () (QWidget), 31
setSizePolicy() (Qwidget), 102, 118,373
setSizes() (QSplitter), 143
setSort () (QDataTable), 272
setSorting() (QTable), 268
setSpacing()

QHBox, 7

QLayout, 15, 138
setStyle() (Qwidget), 122
setSubtype () (QTextDrag), 219
setTabOrder () (QWidget), 18
setText ()

DiagramBox, 196

QClipboard, 81,224

QLabel, 57

QLineEdit, 75

QListViewItem, 310,315

434

Index

setText () (continued)
Ticker, 167
setToggleAction() (QAction), 45
setToolTip() (QAction), 339
setUserName () (QSqglDatabase), 261
setVScrollBarMode() (QScrollview), 146
setValidator() (QLineEdit), 25,98
setValue()
Qslider, 7
QSpinBox, 7
QSglRecord, 265
setVelocity() (QCanvasItem), 198
setVersion() (QDataStream), 79, 228, 230,
231, 232-234
setViewport () (QPainter), 182
setWFlags () (Qwidget), 158
setWhatsThis () (QAction), 341
setWidget () (QDockWindow), 152
setWindow() (QPainter), 179, 182
setWorldMatrix() (QPainter), 179
setz() (QCanvasItem), 191
setZoomFactor () (IconEditor), 103
settings, 63-64, 143, 152, 258
setup() (QPrinter), 198,199
SGI style, 8
shape-changing dialogs, 28—-33
shared classes, 103, 249, 254, 258—259,
364
shear () (QPainter), 180
Shift key, 107, 164
Shift-JIS, 323
SHLIB_PATH environment variable, 397
shortcut keys, 44, 156
See also accelerator keys
show ()
QCanvasItem, 190
Qwidget, 3,58, 119
showEvent () (Ticker), 167
showMessage () (QSqlError), 262, 263
showNewItem() (Diagramview), 194
showPage () (HelpBrowser), 344, 347
showTip () (QToolTipGroup), 340
shutdown, 384, 387
signals and slots
compared with events, 163
connecting, 6-8, 18-19, 24
declaring, 12, 18
disconnecting, 19
emitting signals, 17
establishing connections in Q¢
Designer, 25, 32
implementing slots, 17, 21
in multithreaded applications, 364,
365

signals and slots (continued)
parameter types, 19
return values for slots, 41
SIGNAL() and SLOT() macros, 6, 19
signals and slots pseudo-keywords,
12,20
simplifyWhitespace() (QString), 257
Single (QTable), 73, 81
single document interface (SDI), 67
single-shot timers, 168, 182, 293
size() (container classes), 248
sizeHint property (QSpacerItem), 30
sizeHint ()
Editor, 160
IconEditor, 102
Plotter, 120
QScrollview, 148
owidget, 32, 57, 140
Ticker, 167
size hints, 32, 57,102, 103, 118, 137,
139-140
size policies, 102, 118, 139
sizes () (QSplitter), 248
slash (?), 53, 63, 238
sliders, 6, 36
slots
connecting to a signal, 6-8, 18-19,
24
declaring, 12, 18
disconnecting, 19
establishing connections in @t
Designer, 25, 32
implementing, 17, 21
parameter types, 19
SLOT () macro, 6, 19
slots pseudo-keyword, 13, 20
SmcConn type, 370
sockets. See QSocket
Solaris, 369
SolidLine, 176
Solidpattern, 177
somethingChanged () (Spreadsheet), 77
sort ()
MainWindow, 60
Spreadsheet, 85
STL, 88, 247
SortDialog
creating using Q¢ Designer, 28—32
invocation, 60, 61
init(), 31
setColumnRange(), 31
Sort example, 28-32, 60
source () (QDropEvent), 220
Space key, 168

Index 435
spacer items, 15, 22, 30 start()

spaces (in strings), 256—257 QThread, 352

spacing (in layouts), 7, 138 QTimer, 182

spanX () (PlotSettings), 116 startDocument () (QXmlContentHandler),
spanY () (PlotSettings), 116 308

specializing. See subclassing
spin boxes, 6, 36, 97-99
splash screens, 67-68
splines, 176, 178, 186
split() (QStringList), 82,236,257
splitters, 140143, 152
Spreadsheet
class definition, 71
inheritance tree, 70
Spreadsheet (), 73
autoRecalculate(), 71

cell(), 74
clear(), 73
copy(), 80

createEditor(), 75
currentFormula(), 75
currentLocation(), 75

cut (), 80
del(), 82
endEdit (), 76

findNext (), 83
findPrev(), 84
)

formula(), 74
modified(), 77
paste(), 81

readFile(), 79
recalculate(), 84
selectall(), 83
selectColumn(), 83
selectRow(), 83
selection(), 81
setAutoRecalculate(), 85
setFormula(), 75
somethingChanged (), 77
sort(),85
writeFile(), 77,172
SpreadsheetCompare class, 60, 86—-88
Spreadsheet example, 39—68, 69-95
spreadsheetModified() (MainWindow), 57
sprintf () (QString), 254
SQL, 261-282
SQLite, 262, 393
Square class, 87
SquareCap, 177
stable_sort() (STL), 86, 88
stack memory, 4849, 60, 64
standard dialogs, 36—-38
Standard Template Library, 243-251
standard widgets, 33—36

startDrag() (ProjectView), 219
startDragDistance() (QApplication), 218
startElement () (SaxHandler), 310
startOrStopThreadA() (ThreadForm), 352
startTimer () (QObject), 167
startsWith() (QString), 256
state()
QKeyEvent, 126, 164
QMouseEvent, 107
stateChanged() (QFtp), 286
status() (QFile), 229
statusBar () (QMainWindow), 43, 57
status bars, 43,51, 56-58, 157, 339-340,
363
status tips, 44, 56, 339-340
std namespace, 72, 115
STL, 243-251
stop() (Thread), 350, 353-354
stopSearch() (TripPlanner), 297
streaming, 227-237
stretch factors, 57, 140
stretches. See spacer items
string class, 254
strings, 254-258
stripWhitespace() (QString), 256
strippedName () (MainWindow), 53
style()
QApplication, 122
QWidget, 122
-style option, 8
styles, 8,47, 122
subclassing
built-in widgets, 97-99
COM interfaces, 378
@t Designer forms, 27
QApplication, 385
QAxAggregated, 378
QAxBindable, 375
QAxFactory, 381
QAxObject, 375
QAxWidget, 375
QCanvasLine, 188
QCanvasRectangle, 187
QCanvasView, 186
QComboBox, 280
QCustomEvent, 361
QDialog, 12,267,271, 275, 304, 351
QDragObject, 221
QGLwWidget, 209

436

Index

subclassing (continued)

QListBox, 217

QListViewItem, 380

QMainWindow, 40, 380

QObject, 20-21, 286, 380

QPushButton, 302

QScrollview, 146

QServerSocket, 298

QSocket, 298

QSpinBox, 97-99

QSqglEditorFactory, 282

QTable, 71,224

QTableItem, 88

QTextEdit, 158

QThread, 350, 361

QWhatsThis, 345

Qwidget, 100, 115, 166, 180, 342, 371,

375, 387

QWidgetPlugin, 109

QXmlDefaultHandler, 309
sub-layouts, 15, 138
submenus, 46, 55
supportsSelection() (QClipboard), 226
switchToLanguage () (MainWindow), 332
Sybase Adaptive Server, 262
synchronizing threads, 353-358
synchronous operations, 364

See also asynchronous operations
Syriac, 320
system registry, 63

T

Tab key, 118, 164
tab order, 18, 24, 164
tab widgets, 33, 34
table cells, 71
tables. See QTable
“tabs and newlines” format, 81, 221,
223

tagName () (QDomElement), 314
Tamil, 320
taskbar, 51
Tcl/Tk integration, 367
TCP, 283, 291-301
TDS, 262
Telugu, 320
template classes. See container classes
templates (Q¢ Designer), 21, 37,99, 145
terminate () (QThread), 350
text()

cell, 90

MyWhatsThis, 345

text () (continued)
QClipboard, 82, 224
QLabel, 59
QLineEdit, 77
QSpinBox, 98
text browsers, 35
textChanged () (QLineEdit), 14
text editors, 36
text encodings, 222, 224, 234, 317,
319-323
text engine, 201-203, 320
text I/O, 234-237, 291, 301
Thaana, 320
Thai, 320
theme engines, 8
Thread
class definition, 350
Thread(), 350
run(), 350, 353
stop(), 350, 353
-thread option, 352
ThreadForm
class definition, 351
ThreadForm(), 351
closeEvent (), 352
startOrStopThreadA(), 352
thread-local storage, 358
thread-safety, 363
thread synchronization, 353-358
Threads example, 349-353
three-button mice, 225
three-dimensional graphics, 209-214
Tibetan, 320
TicTacToe
class definition, 387
TicTacToe(), 388
clearBoard(), 388
restoreState(), 389
saveState(), 388
sessionFileName(), 388
Tic-Tac-Toe example, 384-389
Ticker
class definition, 166
Ticker(), 166
hideEvent (), 168
paintEvent (), 167
setText (), 167
showEvent (), 167
sizeHint (), 167
timerEvent (), 168
Ticker example, 165-168
tile() (QWorkspace), 156
time, 182
time editors, 36, 328

Index

437

timeout ()

OvenTimer, 180

QTimer, 168, 181, 293
timerEvent ()

PlayerWindow, 374

QObject, 173

Ticker, 168

WeatherBalloon, 303
timer events, 165—-168
timers

0-millisecond, 173

in multithreaded applications, 364

single-shot, 168, 182, 293

timerEvent () vs. QTimer, 168
TIS-620, 323
title bars, 4, 7
TLS (thread-local storage), 358
toCsv() (CellDrag), 222
toDouble() (QString), 91,255
toElement () (QDomNode), 314
toHtml () (CellDrag), 223
toInt () (QString), 60, 98, 255
toString ()

QDate, 328

QDateTime, 328

QTime, 328

Qvariant, 90
toText () (QDomNode), 315
toUnicode () (QTextCodec), 322
toggle actions, 45
toggle buttons, 34, 45
toggle menu items, 45, 156
toggled() (QAction), 45
toolbars, 44, 47-48, 150-152
toolbox (Qt Designer), 22
toolboxes, 34
tool palettes, 152
toolTip() (IconEditorPlugin), 111
tooltips, 111, 339, 340
topDock () (QMainWindow), 43
top-level widgets, 4, 51
tr() (Qobject), 13,20, 322, 323-326, 331,

335

tracking mouse moves, 107
Transaction

class definition, 362

apply(), 363

messageStr(), 363
transaction() (QSqglDatabase), 264, 268,

273

TransactionStartEvent class, 361
TransactionThread

class definition, 361

addTransaction(), 361

TransactionThread (continued)
run(), 362
transformations, 105, 179-180
translate(
QApplication, 325
QpPainter, 180, 185
translating applications, 13, 319,
323-328, 334-337
TRANSLATIONS entry (.pro files), 334
transparency, 101, 106, 368—369
TransparentMode, 178
traversing directories, 237-238
TripPlanner
init(), 292
advanceProgressBar (), 293
closeConnection(), 296
connectToServer (), 293
connectionClosedByServer(), 297
connectionTimeout (), 297
error(), 297
sendRequest (), 294
stopSearch(), 297
updateListView(), 295
Trip Planner example, 292—-298
TripServer
class definition, 298
TripServer (), 298
newConnection(), 298
Trip Server example, 292, 298-301
Tru64 UNIX. See OSF
TRUE constant, 14
truncate() (QString), 259
tryLock () (QMutex), 353
TSCII, 323
TSD (thread-specific data), 358
two-dimensional graphics, 175-214
type()
QEvent, 164
QVariant, 90, 259

U

UCS-2 (UTF-16), 224, 321, 323

UDP, 283, 301-305

Ul builder. See @t Designer

.ui files, 25, 26, 33, 194, 239

.ui.h files, 26-28, 99, 194, 239, 292
uic, 25,28, 33, 44, 239, 334

Ultrix, 369

Unicode, 234, 235, 254, 264, 319-323
unicode() (QChar), 320

uniform resource locators (URLs), 286

438

Index

universal resource identifiers (URIs),
217
Unix, 367-370, 397-398
UnixWare, 369
unlock() (QMutex), 353, 354
-unregserver option, 381
unsetCursor () (QWidget), 124, 190
untitled documents, 158
update()
QCanvas, 191
QCanvasItem, 196
QSqglCursor, 265, 278
Qwidget, 103,104, 119, 148, 167, 168
UPDATE statement, 265
updateCaption() (HelpBrowser), 344
updateCellIndicators() (MainWindow), 57
updateContents () (QScrollview), 148,
150
updateGeometry () (Qwidget), 103, 147,
167
updateCL () (QGLWidget), 212
updateListView() (TripPlanner), 295
updateMenus () (MainWindow), 155
updateModIndicator() (MainWindow), 157
updateOutputTextEdit () (ConvertDialog),
241
updateRecentFileItems () (MainWindow),
54
updateRubberBandRegion() (Plotter),
126-127
upper ()
QChar, 321
QString, 98, 256
URIs, 217
URLs, 286
user actions, 4,5, 163
user interface compiler (uic), 25, 28, 33,
44,239, 334
using namespace directive, 72
UTF-8, 224, 235, 317, 321, 323
UTF-16 (UCS-2), 224, 321, 323

\"

validating XML parsers, 307, 312
validators, 26, 98
value()

cell, 91

QsglCursor, 265

0SqlQuery, 262
value binding (SQL), 263—264
valueChanged ()

Qslider, 7

valueChanged() (continued)
QSpinBox, 7
values () (QMap<K, T>), 251
variants, 89, 100, 258—260, 262, 373
vector<T>, 245
iterators, 246
erase(), 247
insert(), 247
operator(] (), 245, 246
push_back (), 245
vectors, 243-247, 251-252
VerPattern, 177
version of data stream, 79, 228, 230,
232-234
version of operating system, 370
version of Qt, 4,393
verticalHeader () (QTable), 73
vertical layouts, 15, 23, 137
verticalScrollBar () (QScrollview), 73,
145
Vietnamese, 320
viewport
of a painter, 178-179, 182-184, 185,
199
of a scroll view, 73, 145, 147, 149
viewport () (QScrollview), 73, 145, 149,
216
visible widgets, 4, 59, 119
Visual Basic, 380
Visual C++,4, 18
Visual Studio, 5
volatile keyword, 350

W

W3C, 312
wait()
QThread, 352
QWaitCondition, 357
wait conditions, 356—358
Wait Conditions example, 356-358
wait cursor, 78
wakeAll () (QWaitCondition), 357
wakeUp () (QEventLoop), 363
warning () (QMessageBox), 49-50, 52
wasCanceled() (QProgressDialog), 173
WDestructiveClose, 66, 158, 344
WeatherBalloon
class definition, 302
WeatherBalloon(), 302
timerEvent (), 303
Weather Balloon example, 302—-304

Index

439

WeatherStation
class definition, 304
WeatherStation(), 304
dataReceived(), 305
Weather Station example, 302,
304-305
WFlags. See flags
WGroupLeader, 343
whatsThis ()
IconEditorPlugin, 111
QMainWindow, 341
What’s This?, 111, 340-341, 344
wheelEvent () (Plotter), 126
whitespace, 256257
widget stacks, 33, 144
widgets
built-in, 33-36, 69, 99
coordinate system, 105, 107, 125
custom, 97-132, 278
disabled, 14, 105, 170
fixed size, 140
flags. See flags
focus policy, 118
geometry, 136
hidden, 4, 59, 139
maximum size, 137, 140
minimum size, 137, 140
names, 12, 13, 385
palette, 105,118,184
platform-specific ID, 367
properties, 20, 22, 100, 280
size hint, 32, 57, 102, 103, 118, 137,
139-140
size limit, 150
size policy, 102, 118, 139
styles, 8,47, 122
top-level, 4, 51
See also windows
width() (QImage), 108
Win32 API, 368, 369
Win64 API, 369
winEvent () (QWidget), 370
winEventFilter() (QApplication), 370
winId() (Qwidget), 367,370
winVersion() (QApplication), 370
window (of a painter), 178-179,
182-184,199
windowActivated() (QWorkspace), 154
windowList () (QWorkspace), 156
window managers, 384
windows
active, 59, 105, 154
caption, 7,151
closing, 4, 14

windows (continued)

icon, 43

MDI children, 152

platform-specific ID, 367

title bar, 4, 7

See also widgets
Windows (Microsoft)

classic style, 8,47, 122

hibernation, 384

installing Qt, 394-395

Media Player, 371

native APIs, 367-370

registry, 63

versions, 370

XP style, 8, 122
Windows menus (MDI), 152, 156-157
wizards, 37
WNoAutoErase, 112,117,118, 147, 185
world matrix, 178, 179-180
World Wide Web Consortium, 312
writeBlock()

QFile, 231

QSocket, 295

QSocketDevice, 303
writeEntry() (QSettings), 63
writeFields() (0SqlForm), 275,278
writeFile() (Spreadsheet), 77, 172
writeRawBytes () (QDataStream), 231
writeSettings ()

MailClient, 143

MainWindow, 63
writeToStream() (Gallery), 229
writing systems, 319, 320
WStaticContents, 101, 108, 112, 147

X

X11
installing Qt, 397-398
native APIs, 367-370
selection clipboard, 225
session management, 384-389
x11Display() (QPaintDevice), 370
x11Event () (QWidget), 370
x11EventFilter() (QApplication), 370
x11Screen() (QPaintDevice), 370
XBM files, 43
XEvent type, 370
XML
reading documents, 307-316
SAX vs. DOM, 307
.ui files, 27
validation, 307, 312

440 Index

XML (continued)
writing documents, 316-317
XorRop, 127,178
XP style, 8, 122
XPM files, 43
xsm, 389
Xt integration, 367

Z

z coordinate of canvas items, 191, 200
zlib, 232

zoomIn() (Plotter), 119

zoomOut () (Plotter), 119

Informit 7x9.25 8/7/02 8:22 AM Page 1 $

YOUR GUIDE TO IT REFERENCE

Articles

Keep your edge with thousands of free articles, in-depth

features, interviews, and IT reference recommendations —

all written by experts you know and trust.

Online Books

Answers in an instant from InformIT Online Book’s 600+ POWERED BY

fully searchable on line books. Sign up now and get your Safari
first 14 days free.

Catalog

Review online sample chapters, author biographies and

customer rankings and choose exactly the right book from

a selection of over 5,000 titles.

o

Safari 7x9.25 8/7/02 8:24 AM Page 1 $

Wouldn't it be great

if the world’s leading technical
publishers joined forces to deliver
their best tech books in a common
digital reference platform?

They have. Introducing
InformIT Online Books
powered by Safari.

m Specific answers to specific questions.

InformIT Online Books’ powerful search engine gives you relevance-
ranked results in a matter of seconds.

m Immediate results.

With Informlt Online Books, you can select the book you want
and view the chapter or section you need immediately.

= Cut, paste and annotate.

Paste code to save time and eliminate typographical errors.
Make notes on the material you find useful and choose whether
or not to share them with your work group.

= Customized for your enterprise.

Customize a library for you, your department or your entire

organization. You only pay for what you need.

I POWERED BY

)
X
o
o
T
0
£
s
o
N
£
o
9
=
£
L
o
L
£

Get your first 14 days FREE!

InformIT Online Books is offering its members a 10 book subscription risk-free for
14 days. Visit http://www.informit.com/onlinebooks for details.

Perens Series (BOB) 12/03 12/23/03 3:42 PM Page 1

BRUCE PERENS’ OPEN SOURCE SERIES

TEA BRI A I

SAMBA-3
HOWTO and
Reference Guide

BRUCE PERENS’ OPEN SOURCE SERIES

MANAGING
LINUX
SYSTEMS

WITH H
‘\Webmin

IAMIE CAMFERON

IMPLEMENTING

CIFS

The Common Internet File System

OPHERS R HIFRTET

BRUCE PERENS’ OPEN SOURCE SERIES

INTRUSION
DETECTION
witH SNORT

Advanced IDS Technigues
using/Snort, Apache,
WySOL, PHP, 24 AGID

RAFEEQ UR REHMAN

/‘\

Bruce Perens’ Open Source Series

FROM PRENTICE HALL PTR
www.phptr.com/perens

THE OFFICIAL SAMBA-3
HOWTO and Reference Guide

BY JOHN H. TERPSTRA AND JELMER RINZE VERNOOIJ
* ©2004, paper, 736 pages, 0-13-145355-6

This is the definitive guide to using Samba-3 in production environments. It
begins with the immense amount of HOWTO information published by the
Samba Team and volunteers around the world . . . but that's just the beginning.
The book’s Samba-Team editors have organized and edited this material
around the practical needs of working Windows® administrators. UNIX®/Linux
administrators will find all the answers they need as well.

MANAGING LINUX SYSTEMS WITH WEBMIN
System Administration and Module Development

BY JAMIE CAMERON e ©2004, paper, 720 pages, 0-13-140882-8

Written by the creator of Webmin, this book explains how to use the most
popular Webmin modules to perform common administration tasks on a Linux
system. Each chapter covers a single server or service and is broken down into
sections that list the steps required to carry out certain tasks using Webmin.

ImMPLEMENTING CIFS

The Common Internet File System

BY CHRISTOPHER R. HERTEL e ©2004, paper, 400 pages,
0-13-047116-X

This book, written by a member of the Samba Team dedicated to investigating the
inner-workings of CIFS, gathers together and presents, in a readable, accessible
format, a complete reference for system administrators and network programmers
on the CIFS protocol.

INTRUSION DETECTION SYSTEMS WITH SNORT
Advanced IDS Techniques Using SNORT,
Apache, MySQL, PHP, and ACID

NN
PRENTICE
HALL

PTR

BY RAFEEQ UR REHMAN e ©2003, paper, 300 pages,
0-13-140733-3

This book provides information about how to use free Open Source tools to
build and manage an Intrusion Detection System. Rehman provides detailed
information about using SNORT as an IDS and using Apache, MySQL, PHP
and ACID to analyze intrusion data.

FROM PRENTICE HALL PTR ¢ www.phptr.com

Perens Series (BOB) 12/03 12/23/03 3:42 PM Page 2

-

BRUCE PERENS’ OPEN SOURCE SERIES

The LINUX
DEVELOPMENT

BY RAFEEQ UR REHMAN AND CHRISTOPHER PAUL PLATFORM
e ©2003, paper with CD-ROM, 512 pages, 0-13-009115-4 e

THE LINUX DEVELOPMENT PLATFORM

This is an all-in-one resource for setting up, maintaining, and using Linux as an
enterprise-level deployment environment. It provides information for all the latest
versions of the tools needed for development on Linux systems, with examples

about how to build, install, and use these tools.
RAFEEQ UR REHMAN
CHRISTOPHER PAUL
. S—

EMBEDDED SOFTWARE DEVELOPMENT
wiTH ECOS EMBEDDED

BY ANTHONY I. MASSA e ©2003, paper with CD-ROM, bOFTWAP\E

432 pages, 0-13-035473-2 DEVELOPMENT
This book shows developers and managers the advantages of using eCos — the with ecﬂs

Embedded Configurable Operating System — over proprietary or commercial =

embedded operating systems. %

RAPID APPLICATION DEVELOPMENT

WITH MoziLLA ANTHOTENR 8

BY NIGEL MCFARLANE ¢ ©2004, paper, 800 pages, 0-13-142343-6 SRUCE peREns OPEN SOURCE SEAIE
In Rapid Application Development with Mozilla, Web, XML, and Open Standards ;\\II‘;\I‘I‘?IEI[& ATION

expert Nigel McFarlane explores Mozilla’s revolutionary XML User interface DEVELOPMEN

Language (XUL) and its library of well over 1,000 pre-built objects. il Mozi I Ia
ComING EARLY 2004 _— ,

UNDERSTANDING THE LINUX VIRTUAL
MEMORY MANAGER

BY MEL GORMAN e ©2004, paper with CD-ROM, 832 pages,

0-13-145348-3 BRUCE PERENS' OPEN SOURCE SERIES
:)) UNDERSTANDING
Your expert guide to the 2.6 Linux Kernel’s most important component: rHE LINUX

The Virtual Memory Manager. Plus, the amazing CD-ROM is a virtual VM
“learning lab” with tools developed specifically for VM study PLUS all of the
2.6 kernel source code.

COMING SOON

SAMBA-3 BY EXAMPLE
Practical Exercises to Successful Deployment

Virtual Memory
I\Ilanager

[~

MEL GORMAN

N\

JOHN H. TERPSTRA e ©2004, paper with CD-ROM, 256 pages, PRENTICE
HALL
0-13-147221-6 PTR

FROM PRENTICE HALL PTR ¢ www.phptr.com

PTR Online pg (9/02)7x9.25

9/25/02

11:06 AM Page 1

Prentice Hall Professional Technical Reference

BB

= |

e

|http </ furwew phptr com/

v a s

-

Prentice Hall PTR InformaIT InformIT ©nline Books Financial Times Prentice Hall ft.comm PTG Interactive Eeuters

Search | Help |

Q ?

-

PTR Favorites
Find a Bookstore
Book Series
Special Interests
MNewsleters

Press Room
International
Best Sellers

Solutions Beyond
the Bock

™" | Shopping Bag

ToMORRS CLUTIONS FOR ToDAY'!'S FPROFESSIOMALS

Prentice Hall Professional Technical Reference

Book
Series

Keep Up to Date with

PH PTR Online

©

@

]

We strive to stay on the cutting edge of what's happening in
professional computer science and engineering. Here's a bit of
what you'll find when you stop by www.phptr.com:

What's new at PHPTR? we don't just publish books for the
professional community, we're a part of it. Check out our convention
schedule, keep up with your favorite authors, and get the latest reviews
and press releases on topics of interest to you.

Special interest areas offering our latest books, book series,
features of the month, related links, and other useful information to help
you get the job done.

User Groups Prentice Hall Professional Technical Reference’s User
Group Program helps volunteer, not-for-profit user groups provide their
members with training and information about cutting-edge technology.

Companion Websites our Companion Websites provide
valuable solutions beyond the book. Here you can download the source
code, get updates and corrections, chat with other users and the author
about the book, or discover links to other websites on this topic.

@ Need to find a bookstore? cChances are, there's a bookseller

near you that carries a broad selection of PTR titles. Locate a Magnet
bookstore near you at www.phptr.com.

Subscribe today! Join PHPTR's monthly email newsletter!
Want to be kept up-to-date on your area of interest? Choose a targeted
category on our website, and we'll keep you informed of the latest PHPTR
products, author events, reviews and conferences in your interest area.

Visit our mailroom to subscribe today! http://www.phptr.com/mail_lists

About the Authors

Jasmin Blanchette

Jasmin graduated in computer science in 2001 from the University of Sher-
brooke, Quebec, and was awarded the Fernand Seguin medal of excellence.
He did a work term at Trolltech in the summer of 2000 as a software engineer
and has been working there continuously since early 2001. Now a senior soft-
ware engineer, he is the driving force behind the Q¢ Linguist translation tool
and provides @t Quarterly, Trolltech’s technical newsletter, with much of its
content. In his spare time, he is writing a novel in Norwegian and Swedish.
He lives in Oslo with his girlfriend Anne-Lene.

Mark Summerfield

Mark graduated in computer science in 1993 from the University of Wales
Swansea. He followed this with a year’s postgraduate research before going
into industry. He spent many years working as a software engineer for a vari-
ety of firms before joining Trolltech. For the past few years, he has been Troll-
tech’s documentation manager, responsible for maintaining over 1500 pages
of online Qt documentation and for editing Q¢ Quarterly. In his free time, he
writes open source software. He lives in the Swansea Valley in South Wales,
UK, with his wife Andrea.

Production

The authors wrote the text using NEdit and Vim. They typeset and indexed
the text themselves, marking it up with a modified Lout syntax that they con-
verted to pure Lout using a custom preprocessor written in Python. They pro-
duced all the diagrams in Lout and used ImageMagick to convert screenshots
to PostScript. The monospaced font used for code is derived from Courier and
was created using PfaEdit. The cover was provided by the publisher; the pho-
tograph is of the fall of the Berlin Wall, November 1989. The marked-up text
was converted to PostScript by Lout, then to PDF by Ghostscript. The authors
did all the editing and processing on Debian GNU/Linux systems under KDE.
The example programs were tested on Windows, Linux, and Mac OS X.

About the CD-ROM

The CD-ROM included with C++ GUI Programming with @t 3 contains all the
software and source code needed to create and run applications on Windows,
Mac OS X, and Unix/Linux with X11. The CD-ROM includes the following:

¢ Qt 3.2.1 Non-Commercial Edition for Windows
* Qt 3.2.1 Free Edition for Mac OS X
¢ Qt 3.2.1 Free Edition for Unix/Linux with X11
¢ Borland C++ Builder 5 Non-Commercial Edition
¢ Borland C++ Builder 6 Trial Edition
* Source code for the book’s examples
All versions of Qt come with the Qt library and a set of tools including the

gmake build tool, @ Designer for visual dialog design, Q¢ Linguist for interna-
tionalization support, and @t Assistant for presenting documentation.

The CD-ROM can be used on Microsoft Windows 95, 98, NT 4, ME, 2000, XP,
Mac OS X, Linux, and most versions of Unix.

License Agreement

Each of the software packages on the CD-ROM has its own license agree-
ment. The full legal texts of the licenses are included with the packages on the
CD-ROM.

Technical Support

Neither Prentice Hall nor Trolltech offers any technical support for any of
the software on the CD-ROM. (Fully supported commercial editions of Qt are
available from Trolltech; fully supported commercial editions of Borland C++
Builder are available from Inprise.) If the CD-ROM is damaged, you can
obtain a replacement copy by sending an email that describes the problem to
disc_exchange@prenhall.com.

	Contents
	A brief history of Qt
	Part 1:Basic Qt
	1.Getting started
	A:Installing Qt
	B:Qt's class hierarchy

